
Course organization

• Course introduction (Week 1)
• Code editor: Emacs

• Part I: Introduction to C programming language (Week 2 - 9)
• Chapter 1: Overall Introduction (Week 1-3)
• Chapter 2: Types, operators and expressions (Week 4)
• Chapter 3: Control flow (Week 5)
• Chapter 4: Functions and program structure (Week 6, 7)
• Chapter 5: Pointers and arrays (Week 8)
• Chapter 6: Structures (Week 9)
• Chapter 7: Input and Output (Week 10)

• Part II: Skills others than programming languages (Week 11- 12)
• Debugging tools（Week 11）
• Keeping projects documented and manageable （Week 12）
• Source code managing （Week 12）

• Part III: Reports from the battle field (student forum) (week 12 – 16)
1

Presenter
Presentation Notes
25

Course review

Chaochun Wei
Shanghai Jiao Tong University

Spring 2013

Contents

Course review
Final project

• Presentation content
• Presentation arrangement

Course review

• Course introduction (Week 1)
• Code editor: Emacs

• Part I: Introduction to C programming language (Week 2 - 9)
• Chapter 1: Overall Introduction (Week 1-3)
• Chapter 2: Types, operators and expressions (Week 4)
• Chapter 3: Control flow (Week 5)
• Chapter 4: Functions and program structure (Week 6, 7)
• Chapter 5: Pointers and arrays (Week 8)
• Chapter 6: Structures (Week 9)
• Chapter 7: Input and Output (Week 10)

• Part II: Skills others than programming languages (Week 11- 12)
• Chapter 8: GDB（Week 11）
• Chapter 9: Make（Week 12）

• Part III: Reports from the battle field (student forum) (week 13 – 16)
• Student presentation (week13-15)
• Project demo (week 16)

4

Presenter
Presentation Notes
25

Week 1

Text Book
The C Programming
Language, Second Edition
by Brian W. Kernighan and
Dennis M. Ritchie. Prentice
Hall, Inc., 1988.

6

Presenter
Presentation Notes
31

References

 Emacs
 tutorial: http://www.gnu.org/software/emacs/tour/
Manual:

http://www.gnu.org/software/emacs/manual/emacs.pdf

 GDB
Document:

http://www.gnu.org/software/gdb/documentation/

7

Presenter
Presentation Notes
33

http://www.gnu.org/software/emacs/tour/
http://www.gnu.org/software/emacs/manual/emacs.pdf

Grading

 Homework 50％
 Projects 30％

Design and implementation of a diff program for lists
of different biological entities

 Presentation 20％

8

Presenter
Presentation Notes
35

作业规定
 作业允许合作，但是必须注明各人的贡献
 作业报告必须用自己的语言独立完成
 严禁抄袭

抄袭者：不及格(F)
被抄袭者：成绩降一级（AB, BC, CD, DF）

9

Presenter
Presentation Notes
37

Week 2, 3

Emacs tutorial

References:
• Emacs Reference card: emacs.pdf
• Emacs Tutorial

– C-h t

• Linux and Perl Tutorial

– http://cbb.sjtu.edu.cn/~ccwei/pub/courses/2013/program
ming_language_for_bioinformatics/unix_and_perl_v2.3.4.
pdf

11

http://cbb.sjtu.edu.cn/~ccwei/pub/courses/2012/algorithms_in_bioinformatics/unix_and_perl_v2.3.4.pdf
http://cbb.sjtu.edu.cn/~ccwei/pub/courses/2012/algorithms_in_bioinformatics/unix_and_perl_v2.3.4.pdf

Introduction to C

Brief introduction to C program language
• A simple C program
• Elements of a C program
• Source and header files
• Preprocessor
• Arrays and pointers
• Basic types and operators
• Structures
• Control flow

• Conditional switch
• loop

Chapter 2. Types, operators
and expressions

Week 4

Basic Types and Operators

Basic data types
• Types: char, int, float and double
• Qualifiers: short, long, unsigned, signed, const

Constant: 0x1234, 12, “Some string”

Enumeration:
• Names in different enumerations must be distinct
• enum WeekDay_t {Mon, Tue, Wed, Thur, Fri};

enum WeekendDay_t {Sat = 0, Sun = 4};

Arithmetic: +, -, *, /, %
• prefix ++i or --i ; increment/decrement before value is used
• postfix i++, i--; increment/decrement after value is used

Relational and logical: <, >, <=, >=, ==, !=, &&, ||

Bitwise: &, |, ^ (xor), <<, >>, ~(ones complement)

2.12 Precedence and associativity of operators
Operators Associativity

() [] -> . Left to right

! ~ ++ -- + - * & (type) sizeof Right to left

* / % Left to right
+ - Left to right
<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= ^= |= <<= >>= Right to left

, Left to right

Chapter 3. Control Flow

Week 5

Chapt 5 Control Flow

Statement
Block
If, else
Switch
Loops: for, while
Break, continue

Chapter 4. Function and
Program Structure

Week 6,7

Functions

Break large program intro smaller ones
Enable people to build on existing codes
Hide details of operation

• Clarify the whole program
• Make it easier to modify a program

4.4 Scope rules

Source codes can be in different files
• Variable declaration organization
• Variable initialization

Declaration and definition of an external variable

extern int sp;
extern double val [];
/* this is a declaration */

Initialization goes with the definition

Program structure

Header files
Static variables
Register variables
Block structure
Initialization
Recursion
The C preprocessor

Chapter 5. Points and Arrays

Week 8

Contents

5.1 Pointers and addresses
5.2 Pointers and function arguments
5.3 Pointers and arrays
5.4 Address arithmetic
5.5 Character pointers and functions
5.6 Pointer arrays, pointers to pointers
5.7 Multi-dimensional arrays
5.8 Initialization of pointer arrays
5.9 Pointers vs. multi-dimensional arrays
5.10 Command-line arguments
5.11 Pointers to functions
5.12 Complicated declarations

Chapter 6 Structures

Week 9

Contents

6.1 Basic of structures
6.2 Structures and Functions
6.3 arrays of Structures
6.4 Pointers to Structures
6.5 Self-referential structures
6.6 Table lookup
6.7 Typedef
6.8 Unions
6.9 Bit-fields

6.1 Basic of structures

A struct declaration defines a type.
 e.g.: struct point {int x; int y} x, y, z;

Access a member of a structure: structure-name.member
 e.g.: struct point pt; pt = {1, 100};
 printf(“%d, %d”, pt.x, pt.y);

A Structure of structures
• E.g.:

struct rect {
 struct point pt1;
 struct point pt2;
};

6.5 Self-referential structures

Recursive declaration of a structure
• E.g.,

struct tnode {
 char *word; /* point to the text */
 int count; /* number of occurrences */
 struct tnode *left; /* left child */
 struct tnode *right; /* right child */
};

Chapter 7 Input and Output

Week 10

Contents

7.1 Standard input and output
7.2 Formatted output -- printf
7.3 Variable-length argument lists
7.4 Formatted input -- scanf
7.5 File access
7.6 Error handling -- Stderr and Exit
7.7 Line input and output
7.8 Miscellaneous Functions

7.1 Standard input and output

Input
• Read from standard input (keyboard)

• Read characters from an file infile.

• Take input from other program otherprog

prog < infile

int getchar(void)

Otherprog | prog

7.1 Standard input and output

Output
• output to standard output (screen)

• Output to a file outfile

• Output to other program otherprog

Prog > outfile

int putchar(int)

 prog | anotherprog

More details see hands-on example 7.1

7.2 Formatted output --printf

printf
• syntax of printf

• Format string

• Normal characters
• Conversion characters (begins with a %)
• A width or precision may be specified as *

• E.g. , to print at most max characters from a string s:

int printf(char *format, arg1, arg2, …)

printf(“%.*s”, max, s);

7.2 Formatted output --printf

Format string (%)
Character Argument type; printed as

d, i Int; decimal number.

o Unsigned int; unsigned octal number (without a leading zero)

X, x Unsigned int; unsigned hexadecima number (without a leading 0x
or 0X), using abcdef or ABCDEF for 10,11, 12, 13, 14 and 15.

u Unsigned int; unsigned decimal number

c Int; single character.

s Char *; print a string, until a ‘\0’ or the number of characters given
by the precision

f Double; [-]m.dddddd, where the number of d’s is given by the
precision (default 6)

e, E Double; [-]m.dddddd e±xx or [-]m.dddddd E±xx, where the
number of d’s is given by the precision (default is 6)

p Void *; pointer (implementation-dependent representation)

% No argument is converted; print a %

7.5 File access

Read, write, append
Open a file

FILE *fp;
FILE *fopen(char *name, char *mode);

Mode

 “r”: read

 “w”: write

 “a”: append

 “b”: binary files

7.8 Miscellaneous Functions

Storage management
• void *malloc(size_t n);

• Returns a pointer to n bytes of uninitialized storage,
or NULL if the request can not be satisfied

• void *calloc (size_t n, size_t size)

• Returns a pointer to an array of n objects of the
specified size, or NULL if failed.

• void *realloc(void *p, size_t size);

• Changes the size of the object pointed by p to size.
Returns a pointer to the new space or NULL if the
request can not be satisfied, in which case *p is
unchanged

 More details see hands-on experiment 7.8

Chapter 8 GDB in Emacs

Week 11

Contents

8.1 Start and exit gdb in emacs
8.2 Breakpoints
8.3 Running your program in gdb
8.4 Examining data
8.5 Tracing

Chapter 9 the Make tool

Week 12

Contents

9.1 make
9.2 A simple Makefile
9.3 Writing Rules
9.4 How make works
9.5 Variables Simplify
9.6 make deduces
9.7 Cleanup

Reference: GNU make
http://www.gnu.org/software/make
/manual/make.html#Top

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

9.1 Make

Make is a Unix utility tool, which
• Contains a set of instruction to build a large

program;
• Determines automatically which pieces of the

program should be recompiled, and
• runs the compilation automatically

can be used to describe any task where some
files depends on others
To use make, you need to create a file called
Makefile

 See more details on Makefile_1

The Final Project

Final project (50)
• Report (30)
• Demo
• Presentation (20)

• content

Presentation and demo arrangement

Presentation and demo

Presentation
• Content

• 50% about your project (project design and/or
implementation)

• 50% about the C program language
– A chapter will be assigned to everyone
– Your memorable C programming experience

• Time: 8 minutes (6 + 2)

Demo
• Content

• Show and tell your project
• Test your program with different input files
• Time: 4 minutes

Random number generation

Function rand(), frand()

Set the seed for rand()

• srand(unsigned)

See details about the randomization in presentation_assignment.c

	Course organization
	Course review
	Contents
	Course review
	Week 1
	Slide Number 6
	References
	Grading
	作业规定
	Week 2, 3
	Emacs tutorial	
	Introduction to C
	Chapter 2. Types, operators and expressions
	Basic Types and Operators
	2.12 Precedence and associativity of operators
	Chapter 3. Control Flow
	Chapt 5 Control Flow
	Chapter 4. Function and Program Structure
	Functions
	4.4 Scope rules
	Program structure
	Chapter 5. Points and Arrays
	Contents
	Chapter 6 Structures
	Contents
	6.1 Basic of structures
	6.5 Self-referential structures
	Chapter 7 Input and Output
	Contents
	7.1 Standard input and output
	7.1 Standard input and output
	7.2 Formatted output --printf
	7.2 Formatted output --printf
	7.5 File access
	7.8 Miscellaneous Functions
	Chapter 8 GDB in Emacs
	Contents
	Chapter 9 the Make tool
	Contents
	9.1 Make
	The Final Project
	Presentation and demo
	Random number generation
	Slide Number 44

