
Course organization

• Course introduction (Week 1)

• Code editor: Emacs

• Part I: Introduction to C programming language (Week 2 - 9)

• Chapter 1: Overall Introduction (Week 1-3)

• Chapter 2: Types, operators and expressions (Week 4)

• Chapter 3: Control flow (Week 5)

• Chapter 4: Functions and program structure (Week 6)

• Chapter 5: Pointers and arrays (Week 7)

• Chapter 6: Structures (Week 8)

• Chapter 7: I/O (Week 9)

• Part II: Skills others than programming languages (Week 10- 11)

• Debugging tools（Week 10）

• Keeping projects documented and manageable （Week 11）

• Source code managing （Week 11）

• Part III: Reports from the battle field (student forum) (week 12 – 16)

1

Brief Introduction to the C

Programming Language

Chaochun Wei

Shanghai Jiao Tong University

Spring 2013

Introduction

The C programming language was designed by Dennis
Ritchie at Bell Laboratories in the early 1970s

Influenced by
• ALGOL 60 (1960),

• CPL (Cambridge, 1963),

• BCPL (Martin Richard, 1967),

• B (Ken Thompson, 1970)

Traditionally used for systems programming, though this
may be changing in favor of C++

Traditional C:

• The C Programming Language, by Brian Kernighan
and Dennis Ritchie, 2nd Edition, Prentice Hall

• Referred to as K&R

Standard C

Standardized in 1989 by ANSI (American National

Standards Institute) known as ANSI C

International standard (ISO) in 1990 which was adopted

by ANSI and is known as C89

As part of the normal evolution process the standard was

updated in 1995 (C95) and 1999 (C99)

C++ and C

• C++ extends C to include support for Object Oriented

Programming and other features that facilitate large software

development projects

• C is not strictly a subset of C++, but it is possible to write “Clean

C” that conforms to both the C++ and C standards.

Feb, 26

Course organization

• Course introduction (Week 1)

• Code editor: Emacs

• Part I: Introduction to C programming language (Week 2 - 9)

• Chapter 1: Overall Introduction (Week 1-3)

• Chapter 2: Types, operators and expressions (Week 4)

• Chapter 3: Control flow (Week 5)

• Chapter 4: Functions and program structure (Week 6)

• Chapter 5: Pointers and arrays (Week 7)

• Chapter 6: Structures (Week 8)

• Chapter 7: I/O (Week 9)

• Part II: Skills others than programming languages (Week 10- 11)

• Debugging tools（Week 10）

• Keeping projects documented and manageable （Week 11）

• Source code managing （Week 11）

• Part III: Reports from the battle field (student forum) (week 12 – 16)

6

Elements of a C Program

A C development environment includes

• System libraries and headers: a set of standard libraries and their header

files. For example see /usr/include and glibc.

• Application Source: application source and header files

• Compiler: converts source to object code for a specific platform

• Linker: resolves external references and produces the executable module

User program structure

• there must be one main function where execution begins when the

program is run. This function is called main

• int main (void) { ... },

• int main (int argc, char *argv[]) { ... }

• UNIX Systems have a 3rd way to define main(), though it is not

POSIX.1 compliant
int main (int argc, char *argv[], char *envp[])

• additional local and external functions and variables

A Simple C Program

Create example file: try.c

Compile using gcc:

gcc –o try try.c

The standard C library libc is included

automatically

Execute program

./try

Note, I always specify an absolute path

Normal termination:

void exit(int status);

• calls functions registered with atexit()

• flush output streams

• close all open streams

• return status value and control to host

environment

/* you generally want to

 * include stdio.h and

 * stdlib.h

 * */

#include <stdio.h>

#include <stdlib.h>

int main (void)

{

 printf(“Hello World\n”);

 exit(0);

}

Source and Header files

Just as in C++, place related code within the same module
(i.e. file).

Header files (*.h) export interface definitions

• function prototypes, data types, macros, inline functions and other
common declarations

Do not place source code (i.e. definitions) in the header file
with a few exceptions.

• inline’d code

• class definitions

• const definitions

C preprocessor (cpp) is used to insert common definitions
into source files

There are other cool things you can do with the
preprocessor

Another Example C Program

example.c
/* this is a C-style comment

 * You generally want to palce

 * all file includes at start of file

 * */

#include <stdio.h>

#include <stdlib.h>

int

main (int argc, char **argv)

{

 // this is a C++-style comment

 // printf prototype in stdio.h

 printf(“Hello, Prog name = %s\n”,

 argv[0]);

 exit(0);

}

/* comments */

#ifndef _STDIO_H

#define _STDIO_H

... definitions and protoypes

#endif

/usr/include/stdio.h

/* prevents including file

 * contents multiple

 * times */

#ifndef _STDLIB_H

#define _STDLIB_H

... definitions and protoypes

#endif

/usr/include/stdlib.h

#include directs the preprocessor
to “include” the contents of the file
at this point in the source file.
#define directs preprocessor to
define macros.

Passing Command Line Arguments

When you execute a program

you can include arguments on

the command line.

The run time environment will

create an argument vector.

• argv is the argument vector

• argc is the number of

arguments

Argument vector is an array of

pointers to strings.

a string is an array of characters

terminated by a binary 0 (NULL

or ‘\0’).

argv[0] is always the program

name, so argc is at least 1.

./try –g 2 fred

argc = 4,

argv = <address0>

‘t’‘r’‘y’‘\0’

argv:

[0] <addres1>

[1] <addres2>

[2] <addres3>

[3] <addres4>

[4] NULL

‘-’‘g’‘\0’

‘2’‘\0’

‘f’‘r’‘e’‘d’‘\0’

C Standard Header Files you may want to use

Standard Headers you should know about:

• stdio.h – file and console (also a file) IO: perror, printf,

open, close, read, write, scanf, etc.

• stdlib.h - common utility functions: malloc, calloc,

strtol, atoi, etc

• string.h - string and byte manipulation: strlen, strcpy,

strcat, memcpy, memset, etc.

• ctype.h – character types: isalnum, isprint, isupport,

tolower, etc.

• errno.h – defines errno used for reporting system errors

• math.h – math functions: ceil, exp, floor, sqrt, etc.

• signal.h – signal handling facility: raise, signal, etc

• stdint.h – standard integer: intN_t, uintN_t, etc

• time.h – time related facility: asctime, clock, time_t, etc.

The Preprocessor

The C preprocessor permits you to define simple macros
that are evaluated and expanded prior to compilation.

Commands begin with a ‘#’. Abbreviated list:
• #define : defines a macro

• #undef : removes a macro definition

• #include : insert text from file

• #if : conditional based on value of expression

• #ifdef : conditional based on whether macro defined

• #ifndef : conditional based on whether macro is not defined

• #else : alternative

• #elif : conditional alternative

• defined() : preprocessor function: 1 if name defined, else 0
 #if defined(__NetBSD__)

Preprocessor: Macros

Using macros as functions, exercise caution:
• flawed example: #define mymult(a,b) a*b

• Source: k = mymult(i-1, j+5);

• Post preprocessing: k = i – 1 * j + 5;

• better: #define mymult(a,b) (a)*(b)

• Source: k = mymult(i-1, j+5);

• Post preprocessing: k = (i – 1)*(j + 5);

Be careful of side effects, for example what if we did the
following

• Macro: #define mysq(a) (a)*(a)

• flawed usage:

• Source: k = mysq(i++)

• Post preprocessing: k = (i++)*(i++)

Alternative is to use inline’ed functions
• inline int mysq(int a) {return a*a};

• mysq(i++) works as expected in this case.

Preprocessor: Conditional Compilation

Its generally better to use inline’ed functions

Typically you will use the preprocessor to define
constants, perform conditional code inclusion, include
header files or to create shortcuts

#define DEFAULT_SAMPLES 100

#ifdef __linux

static inline int64_t

gettime(void) {...}

#elif defined(sun)

static inline int64_t

gettime(void) {return (int64_t)gethrtime()}

#else

static inline int64_t

gettime(void) {... gettimeofday()...}

#endif

March, 7

Course organization

• Course introduction (Week 1)

• Code editor: Emacs

• Part I: Introduction to C programming language (Week 2 - 9)

• Chapter 1: Overall Introduction (Week 1-3)

• Chapter 2: Types, operators and expressions (Week 4)

• Chapter 3: Control flow (Week 5)

• Chapter 4: Functions and program structure (Week 6)

• Chapter 5: Pointers and arrays (Week 7)

• Chapter 6: Structures (Week 8)

• Chapter 7: I/O (Week 9)

• Part II: Skills others than programming languages (Week 10- 11)

• Debugging tools（Week 10）

• Keeping projects documented and manageable （Week 11）

• Source code managing （Week 11）

• Part III: Reports from the battle field (student forum) (week 12 – 16)

17

Another Simple C Program

int main (int argc, char **argv) {

 int i;

 printf(“There are %d arguments\n”, argc);

 for (i = 0; i < argc; i++)

 printf(“Arg %d = %s\n”, i, argv[i]);

 return 0;

}

• Notice that the syntax is similar to Java

•What’s new in the above simple program?
– of course you will have to learn the new interfaces and utility

functions defined by the C standard and UNIX

– Pointers will give you the most trouble

Arrays and Pointers

A variable declared as an array represents a contiguous

region of memory in which the array elements are stored.

int x[5]; // an array of 5 4-byte ints.

All arrays begin with an index of 0

An array identifier is equivalent to a pointer that references

the first element of the array

• int x[5], *ptr;

ptr = &x[0] is equivalent to ptr = x;

Pointer arithmetic and arrays:

• int x[5];

x[2] is the same as *(x + 2), the compiler will assume you

mean 2 objects beyond element x.

0

1

2

3

4

1 0 2 3

little endian byte ordering

memory layout for array x

Pointers

For any type T, you may form a pointer type to T.

• Pointers may reference a function or an object.

• The value of a pointer is the address of the corresponding object or function

• Examples: int *i; char *x; int (*myfunc)();

Pointer operators: * dereferences a pointer, & creates a pointer
(reference to)
• int i = 3; int *j = &i;

*j = 4; printf(“i = %d\n”, i); // prints i = 4

• int myfunc (int arg);

int (*fptr)(int) = myfunc;

i = fptr(4); // same as calling myfunc(4);

Generic pointers:

• Traditional C used (char *)

• Standard C uses (void *) – these can not be dereferenced or used in pointer
arithmetic. So they help to reduce programming errors

Null pointers: use NULL or 0. It is a good idea to always initialize
pointers to NULL.

Pointers in C (and C++)

Address

0x3dc

0x3d8

Program Memory

0x3cc

0x3c8

0x3c4

0x3c0

Note: The compiler converts z[1] or *(z+1) to

Value at address (Address of z + sizeof(int));

In C you would write the byte address as:
 (char *)z + sizeof(int);

or letting the compiler do the work for you
 (int *)z + 1;

Step 1:

int main (int argc, argv) {

 int x = 4;

 int *y = &x;

 int *z[4] = {NULL, NULL, NULL, NULL};

 int a[4] = {1, 2, 3, 4};

...

0x3bc

0x3b8

0x3b4

0x3b0

0x3d4

0x3d0

z[3]

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

4

0x3dc

0

0

0

0

4

3

2

1

NA

NA

x

y

Basic Types and Operators

Basic data types

• Types: char, int, float and double

• Qualifiers: short, long, unsigned, signed, const

Constant: 0x1234, 12, “Some string”

Enumeration:

• Names in different enumerations must be distinct

• enum WeekDay_t {Mon, Tue, Wed, Thur, Fri};

enum WeekendDay_t {Sat = 0, Sun = 4};

Arithmetic: +, -, *, /, %

• prefix ++i or --i ; increment/decrement before value is used

• postfix i++, i--; increment/decrement after value is used

Relational and logical: <, >, <=, >=, ==, !=, &&, ||

Bitwise: &, |, ^ (xor), <<, >>, ~(ones complement)

Structs and Unions

structures

• struct MyPoint {int x, int y};

• typedef struct MyPoint MyPoint_t;

• MyPoint_t point, *ptr;

• point.x = 0;point.y = 10;

• ptr = &point; ptr->x = 12; ptr->y = 40;

unions

• union MyUnion {int x; MyPoint_t pt; struct

{int 3; char c[4]} S;};

• union MyUnion x;

• Can only use one of the elements. Memory will be allocated for

the largest element

Conditional Statements (if/else)

 if (a < 10)

 printf(“a is less than 10\n”);

 else if (a == 10)

 printf(“a is 10\n”);

 else

 printf(“a is greater than 10\n”);

If you have compound statements then use brackets (blocks)

• if (a < 4 && b > 10) {
 c = a * b; b = 0;
 printf(“a = %d, a\’s address = 0x%08x\n”, a, &a);
} else {
 c = a + b; b = a;
}

These two statements are equivalent:

• if (a) x = 3; else if (b) x = 2; else x = 0;

• if (a) x = 3; else {if (b) x = 2; else x = 0;}

Is this correct?

• if (a) x = 3; else if (b) x = 2;
else (z) x = 0; else x = -2;

Conditional Statements (switch)

 int c = 10;

 switch (c) {

 case 0:

 printf(“c is 0\n”);

 break;

 ...

 default:

 printf(“Unknown value of c\n”);

 break;

 }

What if we leave the break statement out?

Do we need the final break statement on the default case?

Loops

for (i = 0; i < MAXVALUE; i++) {

 dowork();

}

while (c != 12) {

 dowork();

}

do {

 dowork();

} while (c < 12);

• flow control

– break – exit innermost loop

– continue – perform next iteration of loop

• Note, all these forms permit one statement to be executed. By
enclosing in brackets we create a block of statements.

Acknowledgement

The majority contents of this ppt is from Dr.

Fred Kuhns from Applied Research Laboratory,

Department of Computer Science and

Engineering, Washington University in St. Louis

