- Introduction (Week 1-2)
- Course introduction
- A brief introduction to molecular biology
- A brief introduction to sequence comparison
- Part I: Algorithms for Sequence Analysis (Week 3 11)
- Chapter 1-3, Models and theories
»Probability theory and Statistics (Week 4)
" Algorithm complexity analysis (Week 5)
" Classic algorithms (Week 6)
" Lab: Linux and Perl
- Chapter 4, Sequence alignment (week 7)
- Chapter 5, Hidden Markov Models (week 8)
- Chapter 6. Multiple sequence alignment (week 10)
- Chapter 7. Motif finding (week 11)
- Chapter 8. Sequence binning (week 11)
- Part II: Algorithms for Network Biology (Week 12-16)

Chapter 6
 Multiple sequence alignment

Chaochun Wei

Fall 2014

Contents

1. Reading materials
2. Pairwise alignment using HMM
3. Multiple sequence alignment

- basic algorithms and tools
- how to improve multiple alignment

Reading materials

Book
Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis. Cambridge University Press. Chapter 5, 6 (Errata page: http://selab.janelia.org/cupbook errata.html)

Pair HMM for local alignment

Multiple Alignment

- What can one learn from a multiple alignment?
- How can a multiple alignment be used?
- How is a good multiple alignment obtained?

Q9GPZ8_DICDI/51-243
FTSZ_ARATH/74-267 Q9XJ33_CYACA/92-292

FTSZ_MYCKA/9-202 FTSZ_CORGL/9-202 Q9RWN5_DEIRA/4-197
FTSZ_MYCPU/11-202
FTSZ_PORGI/17-211 Q9S344_9BACT/15-205

FTSZ_AQUAE/8-201 Q19490_CAEEL/49-246 TBA1_SCHPO/53-250 036040_SPIVO/27-224 Q9UVR1_9ZYGO/30-229 Q20823_CAEEL/45-245 TBBP_DROME/46-243 TBG_EUPAE/46-244 TBG_CHLRE/46-247 TBG1_DROME/46-247 Q94771_9TRYP/46-249

TBG_USTVI/46-246
TBG_SCHJP/46-247
O15812_DICDI/46-244
000849_TETTH/46-246
TBG_CAEEL/47-249
TBG_ENTHI/45-242
TBG_YEAST/48-246
TBG_CANAL/75-282
Q9NI44_9TRYP/49-280
TBD_HUMAN/46-242
. . PEVGKKAT
. . PLIGEQAA
. PEAGRVAA
. PEVGRXAA
. PEVGRASA
. . PKVGEEAA
.PEVGKKAA EESIVEIKEK LKGA...DMV IITSGMGGGT
. . PEVARRAA
. . PARARQAA
. . PEVGEEAA
..YTIGKELI
. . YTVGKEMI
. . NTIGKEVI
. . YTEGAELL
. YEQGAEIV
. . HTDGAAIL
. .YTDAEKVQ
. . YTQGEAVQ
. . YSQGEKLQ
. .YEMGDTVQ
..YAAGERVY EEVMEMIDRE AEGSDSLEGF MLLHSIAGGT
..YAHAEKIF EDIVDMIDRE AEGSDSLEGF SLLHSIAGGT
. .YKQGESFY DDIFDMIDRE ADGSESLEGF LLTHSISGGT
..YQEANKIQ DDLLDMIDRE ADTSDSFEAF LLIHSIAGGT
..YCQGQEVQ EKIMDIIIRE AENTNNLDGI LFTHSVSGGT
..YYTTEKMS .EIEEIIDRE VEHCDSLEGF FFCHSICGGT
..YDIGTRNQ DDILNKIDKE IDSTDNFEGF QLLHSVAGGT
..YKYGTEEE ETLLNLIDRE VDKCDNLSNF QLFHSVAGGT
..MEYGDKYI DSITETVREQ VERCDSIQSF LIMHSLSGGT
..SVHGPRHE ESIMNIIRKE VEKCDSFSGF FIIMSMAGGT

GTGGAAVIAS GSGAAPVVAQ
GTGAAPIVAD GTGGAPVVAS GTGAAPVVAG GTGSAPVVAE GTGASPIIAK GTGAAPVIGR GTGAAPVIAR GTGAAPVIAK GSGFTSLVME GSGLGALLLE GSGLGALLLE GSGMGSLMLQ GSGLGSLLIS GSGLTSLIME GSGFGSYLLE GSGMGSYMLE GSGMGSFIME GSGMGSYLLE GSGLGSYLLE GSGLGSYLLE GSGMGSYILE GSGVGSYLLE GSGTGSLLLE GSGLGSKIME GSGLGSNLLE GSGVGSKMLE GAGLGTRVLG GSGLGAFVTQ

Q9GPZ8_DICDI/51-243
FTSZ_ARATH/74-267 Q9XJ33_CYACA/92-292

FTSZ_MYCKA/9-202
FTSZ_CORGL/9-202
Q9RWN5_DEIRA/4-197
FTSZ_MYCPU/11-202
FTSZ_PORGI/17-211 Q9S344_9BACT/15-205 FTSZ_AQUAE/8-201 Q19490_CAEEL/49-246

TBA1_SCHPO/53-250 036040_SPIVO/27-224 Q9UVR1_9ZYGO/30-229 Q20823_CAEEL/45-245 TBBP_DROME/46-243 TBG_EUPAE/46-244 TBG_CHLRE/46-247
TBG1_DROME/46-247
Q94771_9TRYP/46-249
TBG_USTVI/46-246
TBG_SCHJP/46-247
O15812_DICDI/46-244
000849_TETTH/46-246
TBG_CAEEL/47-249
TBG_ENTHI/45-242
TBG_YEAST/48-246
TBG_CANAL/75-282
Q9NI44_9TRYP/49-280
TBD_HUMAN/46-242
..PEVGKKAT EESIEELMNQ IGDT..
..PLLGEQAA EESKDAIANA LKGS.
..PEAGRVAA EESKEDIAKA LQGG..
..PEVGRXAA EDAKDDIEEL LRGR.
..PEVGRASA EDHKNEIEET IKGA.
..PKVGEEAA VEDRDRIKEY LDDI.
..PEVGKKAA EESIVEIKEK LKGA..
..PEVARRAA EASEADIRKI LDDG.H
.. PARARQAA EETLDDIKGM LNDG.
..PEVGEEAA LEDIDKIKEI LRDT...
..YTIGKELI DVVMDRVRRL TERCQSLQGF LIFHSFGGGT GSFFTSLVME
..YTVGKEMI DSVLERIRRM ADNCSGLQGF LVFHSFGGGT GS\&LGALLLE
..NTIGKEVI DLVLDRIRKL ADDCSGLQGF IMFHSFFGGT GS\&LGALLLE
..YTEGAELL DQVLDTIRQD VERCDLLSGF QLCHSIAGGT GSGMGSLMLQ
..YEQGAEIV DKVLSVIRRE AEAADSLEGF QLIHSLGGGT GSGFGSLLIS
..HTDGAAIL DQVLENTRRE VESVDSLQGF QLLHSIGGGT GSGLTSLIME
..YTDAEKVQ DEILEMIDRE ADGSDSLEGF VLTHSIAGGT GS\&FGSYLLE
..YTQGEAVQ ETLLDMIDRE AEYCDSLEGF NMCHSIAGGT GS\&MGSYMLE
..YSQGEKLQ EEVFDIIDRE ADGSDSLEGF ILCHSIAGGT GSGMGSFIME
..YEMGDTVQ ETLFDMIERE AENSDSLEGF VLTHSIAGGT GS\&MGSYLLE
..YAAGERVY EEVMEMIDRE AEGSDSLEGF MLLHSIAGGT GSGLGSYLLE
..YAHAEKIF EDIVDMIDRE AEGSDSLEGF SLLHSIAGGT GSGFGSYLLE
..YKQGESFY DDIFDMIDRE ADGSESLEGF LLTHSIßGGT GSGMGSYILE
..YQEANKIQ DDLLDMIDRE ADTSDSFEAF LLIHSIAGGT GSGVGSYLLE
..YCQGQEVQ EKIMDIIIRE AENTNNLDGI LFTHSV|阝GGT GSCTGSLLLE
..YYTTEKMS .EIEEIIDRE VEHCDSLEGF FFCHSICGGT GSGLGSKIME
..YDIGTRNQ DDILNKIDKE IDSTDNFEGF QLLHSVAGGT GSGIGGNLLE
..YKYGTEEE ETLLNLIDRE VDKCDNLSNF QLFHSVAGGT GSGVGSKMLE
..MEYGDKYI DSITETVREQ VERCDSIQSE LIMHSL|jGGT GAGLGTRVLG
..SVHGPRHE ESIMNIIRKE VEKCDSFSGF FIIMSMAGGT GSCjLGAFVTQ
QML FVTAGMGGGT GTGGAAVIAS DLV FITAGMGGGT GS\&AAPVVAQ DLV FVTAGMGGGT GT\&AAPIVAD DMV FVTAGEGGGT GT\&GAPVVAS DMV FVTAGEGGGT GT(अAAPVVAG DML FITAGMFGGT GT(;SAPVVAE DMV IITSGM|GGGT GT(झASPIIAK RMV FVTAGMGGGT GT\&AAPVIGR KMA FITAGMGGGT GT(AAAPVIAR DMV FISAGLGGGT GTßAAPVIAK

What can one learn from a multiple alignment?

- Some regions tend to be more highly conserved than others
- Gaps are often clustered
- May be conservation of types of residues (e.g. hydrophilic/hydrophobic) even if the residues themselves are variable
- Can plot conservation to get an overview of how it varies

Logo of a section of the tubulin protein family

How can a multiple alignment be used?

- Insights into protein structure/function
- Highly conserved positions/regions mostly likely required for function
- Indels and hydrophilic regions usually on surface
- Better, more sensitive searches
- Uses more information about protein's features to identify homologs
- Position-specific scoring function

Table 2 - The log odds matrix for BLosum 62

$$
\begin{aligned}
& \begin{array}{rrrrrrrrrrrrrrrrrrrrr}
& \mathbf{A} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \mathrm{I} & \mathrm{~K} & \mathrm{~L} & \mathrm{M} & \mathrm{~N} & \mathrm{P} & \mathrm{Q} & \mathrm{~F} & \mathrm{~S} & \mathrm{~T} & \mathrm{~V} & \mathrm{~W} & \mathrm{Y} \\
\mathrm{~A} & 4 & 0 & -2 & -1 & -2 & 0 & -2 & -1 & -1 & -1 & -1 & -2 & -1 & -1 & -1 & 1 & 0 & 0 & -3 & -2 \\
\mathrm{C} & & 9 & -3 & -4 & -2 & -3 & -3 & -1 & -3 & -1 & -1 & -3 & -3 & -3 & -3 & -1 & -1 & -1 & -2 & -2 \\
& \mathrm{D} & & 6 & 2 & -3 & -1 & -1 & -3 & -1 & -4 & -3 & 1 & -1 & 0 & -2 & 0 & -1 & -3 & -4 & -3
\end{array} \\
& \text { E } \\
& \text { F } \\
& \begin{array}{rrrrrrrr}
-1 & -1 & -3 & -1 & -4 & -3 & 1 & -1 \\
-2 & 0 & -3 & 1 & -3 & -2 & 0 & -1
\end{array} \\
& \text { G } \\
& \text { H } \\
& \text { I } \\
& \begin{array}{rrrrrr}
-1 & 0 & -3 & 0 & 0 & -3 \\
-2 & -4 & -2 & -4 & -3 & 0 \\
8 & -3 & -1 & -3 & -2 & 1 \\
& 4 & -3 & 2 & 1 & -3 \\
\mathrm{~K} & & 5 & -2 & -1 & 0
\end{array} \\
& \text { L } \\
& \text { P }
\end{aligned}
$$

FTSZ_AQUAE/8-201
Q19490_CAEEL/49-246
..PEVGEEAA LEDIDKIKEI LRDT...DMV FISAGLGGGT GTGAAPVIAK
..YTIGKELI DVVMDRVRRL TERCQSLQGF LIFHSFGGGT GSGFTSLVME

* *

Scoring multiple alignments

- Common to use "sum of pairs" using the standard pairwise scoring
- An alignment of residue X in the query with the position Y of the alignment that contains the set Y_{i} of residues gets:

$$
\begin{aligned}
& \text { Score }(\mathrm{X}, \mathrm{Y})=\sum_{i} \mathrm{~s}\left(\mathrm{X}, \mathrm{Y}_{\mathrm{i}}\right) \\
& \quad=\sum_{i} \ln \left[\mathrm{P}\left(\mathrm{X}, \mathrm{Y}_{\mathrm{i}} / \mathrm{P}(\mathrm{X}) \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}\right)\right]\right. \\
& \quad=\sum_{\mathrm{i}} \ln \left[\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}_{\mathrm{i}}\right) / \mathrm{P}(\mathrm{X})\right]
\end{aligned}
$$

Sum-of-Pairs scoring (cont)

- $\operatorname{Score}(X, Y)=\sum_{i} \ln \left[P\left(X \mid Y_{i}\right) / P(X)\right]$
we can pre-compute the score for any X
- \quad "Profile" for a multiple alignment
- Important Point: highly variable position tend toward 0 for all scores, while highly conserved positions maintain the $s(X, Y)$ scores, increasing their contribution to the Score

Profile analysis: Detection of distantly related proteins

(amino acid/sequence comparison/protein structure/globin structure/immunoglobulin structure)

Michael Gribskov*, Andrew D. McLachlan ${ }^{\dagger}$, And David Eisenberg*

POS	PROBE				CONSENSUS		C	D	E	F	G	日	I	PROFILE			N	P	Q	R	5	T	V	W	Y	+/-
						A								K	L	M										
1	E	G	V	4	V	3	-2	3	4	0	4	-1	3	-1	4	4	1	1	1	-2	1	2	6	-6	-2	9
2	L	L	5	P	L	2	-2	-2	-1	3	0	-1	3	-1	6	5	-1	3	0	-1	3	1	4	1	-1	9
3	V	V	V	γ	V	2	2	-2	-2	2	2	-3	11	-2	8	6	-2	1	-2	-2	0	2	15	-9	-1	9
4	K	E	A	?	A	6	-2	5	6	-5	4	1	0	5	-2	0	3	3	3	1	3	6	0	-6	-4	9
5	A	P	L	P	P	6	-1	0	1	-2	2	0	1	0	2	2	0	8	2	0	2	2	3	-5	-4	9
6	G	G	G		G	7	1	7	5	-6	15	-1	-3	0	-4	-3	4	3	2	-3	6	4	2	-11	-7	9
7	S	S	0		D	4	-1	7	7	-6	7	2	-2	2	-3	-2	4	3	6	1	6	2	-1	-6	-5	9
8	S	5	T	P	S	4	4	2	2	-4	4	-1	0	2	-3	-2	2	7	0	1	10	6	0	-2	-4	9
9	V	L	V	A	V	5	0	-1	-1	3	1	-2	7	-2	7	6	-1	1	-1	-3	0	2	10	-5	-1	9
10	K	R	R		R	0	-1	1	1	-5	0	2	-2	8	-3	1	3	3	3	10	5	1	-2	7	-5	9
11	M	L	I	I	I	0	-2	-3	-2	7	-3	-3	11	-1	11	10	-2	-2	-1	-2	-2	1	9	-3	1	9
12	S	5	T	S	5	4	6	2	2	-3	5	-1	0	2	-3	-2	3	4	-1	1	12	6	0	0	-4	9
13	C	C	C	C	C	3	15	-5	-5	-1	2	-1	3	-5	-8	-6	-3	1	-6	-3	7	3	3	-13	10	9
14	K	S	Q	R	K	1	-2	3	3	-6	1	3	-2	7	-3	0	3	3	5	7	4	1	-2	2	-5	9
15	A	A	G	S	A	10	3	4	3	-5	8	-1	-1	1	-2	-1	3	4	1	-2	7	4	2	-6	-4	9
16	T	S	D	S	5	4	3	5	4	-5	6	0	0	2	-3	-2	4	3	1	1	9	6	0	-3	-4	9
17	G	G	S	2	G	5	1	6	5	-6	9	1	-2	1	-3	-2	4	3	4	0	6	3	0	-6	-6	9
18	Y	F	L		F	-1	2	-4	-3	9	-3	0	4	-3	6	3	-1	-3	-3	-3	1	-1	2	7	7	9
19	T	T	R	,	T	1	-2	0	1	0	0	0	2	2	2	3	1	1	1	3	1	7	2	1	-2	9
20	F	F	,	L	F	-2	-3	-6	-4	10	-4	-1	6	-4	9	6	-3	-4	-4	-3	-2	-1	3	7	8	4
21	S	S	.	D	S	3	2	5	4	-4	5	0	-1	2	-3	-2	4	3	1	1	8	2	-1	-2	-3	4
22	S	.	.		S	2	3	1	1	-2	3	-1	0	1	-2	-1	2	2	0	1	8	2	0	1	-2	4
23	.	.	.		G	2	0	2	1	-2	4	0	0	0	-1	-1	1	1	1	-1	2	1	1	-3	-2	4
24	.	+	.)	D	1	-1	4	3	-2	2	1	0	1	-1	-1	2	1	2	0	1	1	0	-3	-1	4
25	,	*	-		G	2	0	2	1	-2	4	0	0	0	-1	-1	1	1	1	-1	2	1	1	-3	-2	4
26	,	A	G	*	A	6	0	4	3	-4	6	1	-1	1	-2	-1	5	2	2	-1	3	3	1	-5	-3	4
27	Y	N	Y		Y	0	5	0	-1	5	-1	2	1	-1	0	-1	4	-3	-2	-2	0	3	0	3	6	4
28	E	D	D	Y	D	2	-2	9	8	-3	3	4	-1	1	-3	-2	5	-1	4	-1	1	1	-1	-6	0	9
29	L	M	A	L	L	3	-5	-3	-1	6	-1	-2	6	-1	10	10	-2	0	0	-2	-1	0	6	-1	0	9
30	Y	N	A		N	4	1	3	2	0	2	3	-1	1	-1	-1	8	0	1	-1	2	1	-1	-1	2	9
-			-																							
48	S	G	N	S	S	4	3	5	3	-4	7	0	-2	2	-4	-3	6	3	1	0	10	3	0	-2	-4	9
49	S	S	N	Y	S	2	5	2	1	1	2	1	0	1	-2	-2	5	1	-1	0	8	1	-1	3	1	9

How is a good multiple alignment obtained?

- Can extend dynamic programming (DP) method (Smith-Waterman or NeedlemanWunch) to $\mathrm{N}>2$ sequences

$$
\max \left\{\begin{array}{l:l:l}
X & X & - \\
Y & --Y
\end{array}\right.
$$

The seven neighboring cells are the seven possible paths for the optimal alignment

DP on multiple sequences

- Can extend standard DP to N sequences by using N -dimensional matrix, filling in optimal scores for each element using a defined scoring system, such as sum-ofpairs
- Problem: complexity is $\mathrm{O}\left(\mathrm{L}^{\mathrm{N}}\right)$ for N sequences of length L

Impact of Computational Complexity

- Suppose your algorithm can run on $\mathrm{N}=10$ sequences of length $L=1000$.
- You then get 1000 times as much of the limiting resource.
- How many sequences can you now run on, as a function of the complexity $\mathrm{O}(.$.$) of that limiting$ resource?

Initially $\mathrm{N}=10$ and
L=1000

Then increase limiting resource by 1000 -fold: $\mathrm{N} \rightarrow 10000$

Assuming overhead costs and all other terms are negligible.

Algorithm Complexity	New problem size
$\mathrm{O}(\mathrm{N})$	10,000
$\mathrm{O}(\mathrm{N}$ logN $)$	$\sim 40,000$
$\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$	$10^{\wedge} 8$
$\mathrm{O}\left(\mathrm{N}^{\wedge} 3\right)$	$10^{\wedge} 12$
$\mathrm{O}\left(\mathrm{L}^{\wedge} \mathrm{N}\right)$	$10^{\wedge} 30000$

Making multiple sequence alignment more efficient. MSA program uses pair-wise alignments to define "search space" in which to apply DP to find optimal alignment. Doesn't have to fill in entire N-dim matrix, only those sections that can contribute to the optimal alignment. Uses branch-and-bound to determine the alignment space to be considered.

Proc. Natl. Acad. Sci. USA
Vol. 86, pp. 4412-4415, June 1989
Biochemistry

A tool for multiple sequence alignment

 (proteins/structure/evolution/dynamic programming)David J. Lipman* ${ }^{*}$, Stephen F. Altschul* ${ }^{*}$, and John D. Kececioglu ${ }^{\ddagger}$

Determining and displaying sub-optimal alignments. Can be used to set boundaries for MSA

$$
\begin{array}{r}
\mathrm{M}(\mathrm{x}, \mathrm{y})=\underset{\operatorname{Forward}(\mathrm{x}, \mathrm{y})+}{\operatorname{Backward}(\mathrm{x}, \mathrm{y})}
\end{array}
$$

Can show all cells within some \% of optimum score. Can be used to define boundaries for multi-sequence optimization.

Zuker, M (1991) JMB 221:403-420

How is a good multiple alignment obtained?

- Can extend standard dynamic programming (DP) method (Smith-Waterman or Needleman-Wunch) to $\mathrm{N}>2$ sequences
- O(LN) limits applicability
- Need good heuristic that returns nearoptimal alignments in reasonable time/space

"Progressive Alignment"

- Always do pairwise alignments
- Use DP to get optimal alignment of pairs
- Once a pair is aligned, that alignment is fixed in subsequent steps
- Some programs allow for the revising of previous steps, optimization of total score

CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice

Julie D.Thornpson, Desmond G.Higgins* and Toby J.Gibson*
European Molecular Biology Laboratory, Postfach 102209, Meyerhofstrasse 1, D-69012 Heidelberg, Germany

Overview of ClustalW:

1.Get pairwise "distances" 2.Determine tree 3. Follow order of tree to do pairwise alignments

After each step the alignment is fixed. This generates a complete multiple alignment of the sequences using optimal pairwise alignments (with DP) at each step.

Scoring is SoP with heuristic Modifications (next slide).

Hbb_Human Hbb_Horse Hba_Human Hba_Horse

Pairwise alignment:	Hba_Horse Myg_Phyca Calculate distance matrix
GlbS_Petma Lgb2_Luplu	

Rooted NJ tree (guide tree)

 Rooted NJ tree (guide trand sequence weights

 Bx

Sequence weighting:

Based on shared tree lengths, avoids problems from overly biased samples

Multiple Alignment Lecture 2

Improved Progressive Alignments

- Faster
- More accurate
- Consistency objective

Alternative scoring systems
Position-specific scoring (Profiles)
Probabilistic modeling: Profile-HMMs

More recent improved methods

Faster and/or more accurate

- See recent reviews by:
- Edgar and Batzoglou, Current Opin. Struct. Biol. (2006) 16:368-373
- Notredame, PLoS Comp Biol. (2007) 3:e123
- FFT for speed; combine local and global alignments; iterative refinements; use additional types of information (such as structure) if available; maximize consistency with pairwise alignments

MAFFT - multiple alignment using Fast Fourier Transform, Katoh et al., Nucleic Acids Res. 30:3059-3066 (2002)

- Recode aa sequence into lists of properties (e.g. volume, polarity)
- Considering all possible shifts of ungapped sequences, identify the shifts with high similarity
- Can be computed in $\mathrm{O}(\mathrm{L} / n \mathrm{~L})$ time instead of $\mathrm{O}\left(\mathrm{L}^{2}\right)$

- Gives locally aligned, ungapped segments
- Can be "stitched" together with DP to give global alignment

B

- The order of pairwise alignments is still based on a guide tree
- The whole process can be iterated to refine the alignment
-At each iteration the alignment from the previous iteration is used for the guide tree, and the overall alignment can be broken into pieces that are optimized separately

MUSCLE: a multiple sequence alignment method with reduced time and space complexity, RC Edgar, BMC Bioinformatics 5:113

An alternative scoring system

 (objective function)- Maximize consistency in multiple alignment with each of the optimal pairwise alignments
- Basic idea: given three sequences A, B, C

Pairwise alignments of $A: B$ and $B: C$ infers an alignment of $A: C$
How well does that match the pairwise alignment of $\mathrm{A}: \mathrm{C}$?
Goal: Find most consistent multiple alignment.

ProbCons: Probabilistic consistency-based multiple sequence alignment

Chuong B. Do, Mahathi S.P. Mahabhashyam, Michael Brudno and Serafim Batzoglou
Genome Res. 2005 15: 330-340

Figure 1. Basic pair-HMM for sequence alignment between two sequences, x and y. State M emits two letters, one from each sequence, and corresponds to the two letters being aligned together. State I_{x} emits a letter in sequence x that is aligned to a gap, and similarly state I_{y} emits a letter in sequence y that is aligned to a gap. Finding the most likely alignment according to this model by using the Viterbi algorithm corresponds to applying Needleman- IV unsch with appropriate parameters. The logarithm of the emission probability function $p(. .$.$) at M$ corresponds to a substitution scoring matrix, while affine gap penalty parameters can be derived from the transition probabilities δ and $\boldsymbol{\varepsilon}$ (Durbin et al. 1998).

ProbsCon details:

1. Pairwise alignment probabilities for all pairs of sequences; forward-backward using a similarity matrix (BLOSSUM62)
2. Find maximum expected accuracy alignment; i.e. alignment with maximum number of expected correct aligned pairs
3. Probabilistic consistency transform; find highest accuracy alignment of $\mathrm{X}: \mathrm{Y}$ by $\sum_{z} \sum_{k} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}: \mathrm{Z}_{\mathrm{k}}\right) \mathrm{P}\left(\mathrm{y}_{\mathrm{j}}: \mathrm{z}_{\mathrm{k}}\right)$
4. Guide tree determination based on expected accuracy
5. Progressive alignment based on expected accuracy

Refinement can be done at the end if desired

Revisit the scoring system issue

- Sum-of-Pairs (SoP) assumes a single similarity matrix is appropriate for all positions - the same as for pair-wise alignments
- Want to have a position specific scoring matrix (PSSM) - Profiles implement this using SoP
- HMM-profiles provide probabilistic scoring that is position specific

Profile analysis: Detection of distantly related proteins

(amino acid/sequence comparison/protein structure/globin structure/immunoglobulin structure)

Michael Gribskov*, Andrew D. McLachlan ${ }^{\dagger}$, And David Eisenberg*

POS	PROBE				CONSENSUS		C	D	E	F	G	日	I	PROFILE			N	P	Q	R	5	T	V	W	Y	+/-
						A								K	L	M										
1	E	G	V	4	V	3	-2	3	4	0	4	-1	3	-1	4	4	1	1	1	-2	1	2	6	-6	-2	9
2	L	L	5	P	L	2	-2	-2	-1	3	0	-1	3	-1	6	5	-1	3	0	-1	3	1	4	1	-1	9
3	V	V	V	γ	V	2	2	-2	-2	2	2	-3	11	-2	8	6	-2	1	-2	-2	0	2	15	-9	-1	9
4	K	E	A	?	A	6	-2	5	6	-5	4	1	0	5	-2	0	3	3	3	1	3	6	0	-6	-4	9
5	A	P	L	P	P	6	-1	0	1	-2	2	0	1	0	2	2	0	8	2	0	2	2	3	-5	-4	9
6	G	G	G		G	7	1	7	5	-6	15	-1	-3	0	-4	-3	4	3	2	-3	6	4	2	-11	-7	9
7	S	S	0		D	4	-1	7	7	-6	7	2	-2	2	-3	-2	4	3	6	1	6	2	-1	-6	-5	9
8	S	5	T	P	S	4	4	2	2	-4	4	-1	0	2	-3	-2	2	7	0	1	10	6	0	-2	-4	9
9	V	L	V	A	V	5	0	-1	-1	3	1	-2	7	-2	7	6	-1	1	-1	-3	0	2	10	-5	-1	9
10	K	R	R		R	0	-1	1	1	-5	0	2	-2	8	-3	1	3	3	3	10	5	1	-2	7	-5	9
11	M	L	I	I	I	0	-2	-3	-2	7	-3	-3	11	-1	11	10	-2	-2	-1	-2	-2	1	9	-3	1	9
12	S	5	T	S	5	4	6	2	2	-3	5	-1	0	2	-3	-2	3	4	-1	1	12	6	0	0	-4	9
13	C	C	C	C	C	3	15	-5	-5	-1	2	-1	3	-5	-8	-6	-3	1	-6	-3	7	3	3	-13	10	9
14	K	S	Q	R	K	1	-2	3	3	-6	1	3	-2	7	-3	0	3	3	5	7	4	1	-2	2	-5	9
15	A	A	G	S	A	10	3	4	3	-5	8	-1	-1	1	-2	-1	3	4	1	-2	7	4	2	-6	-4	9
16	T	S	D	S	5	4	3	5	4	-5	6	0	0	2	-3	-2	4	3	1	1	9	6	0	-3	-4	9
17	G	G	S	2	G	5	1	6	5	-6	9	1	-2	1	-3	-2	4	3	4	0	6	3	0	-6	-6	9
18	Y	F	L		F	-1	2	-4	-3	9	-3	0	4	-3	6	3	-1	-3	-3	-3	1	-1	2	7	7	9
19	T	T	R	,	T	1	-2	0	1	0	0	0	2	2	2	3	1	1	1	3	1	7	2	1	-2	9
20	F	F	,	L	F	-2	-3	-6	-4	10	-4	-1	6	-4	9	6	-3	-4	-4	-3	-2	-1	3	7	8	4
21	S	S	.	D	S	3	2	5	4	-4	5	0	-1	2	-3	-2	4	3	1	1	8	2	-1	-2	-3	4
22	S	.	.		S	2	3	1	1	-2	3	-1	0	1	-2	-1	2	2	0	1	8	2	0	1	-2	4
23	.	.	.		G	2	0	2	1	-2	4	0	0	0	-1	-1	1	1	1	-1	2	1	1	-3	-2	4
24	.	+	.)	D	1	-1	4	3	-2	2	1	0	1	-1	-1	2	1	2	0	1	1	0	-3	-1	4
25	,	*	-		G	2	0	2	1	-2	4	0	0	0	-1	-1	1	1	1	-1	2	1	1	-3	-2	4
26	,	A	G	*	A	6	0	4	3	-4	6	1	-1	1	-2	-1	5	2	2	-1	3	3	1	-5	-3	4
27	Y	N	Y		Y	0	5	0	-1	5	-1	2	1	-1	0	-1	4	-3	-2	-2	0	3	0	3	6	4
28	E	D	D	Y	D	2	-2	9	8	-3	3	4	-1	1	-3	-2	5	-1	4	-1	1	1	-1	-6	0	9
29	L	M	A	L	L	3	-5	-3	-1	6	-1	-2	6	-1	10	10	-2	0	0	-2	-1	0	6	-1	0	9
30	Y	N	A		N	4	1	3	2	0	2	3	-1	1	-1	-1	8	0	1	-1	2	1	-1	-1	2	9
-			-																							
48	S	G	N	S	S	4	3	5	3	-4	7	0	-2	2	-4	-3	6	3	1	0	10	3	0	-2	-4	9
49	S	S	N	Y	S	2	5	2	1	1	2	1	0	1	-2	-2	5	1	-1	0	8	1	-1	3	1	9

Profile HMMs

Hidden Markov Models in Computational Biology
 Applications to Protein Modeling

Anders Krogh ${ }^{1} \dagger$, Michael Brown ${ }^{1}$, I. Saira Mian ${ }^{2}$
Kimmen Sjölander ${ }^{1}$ and David Haussler ${ }^{1} \ddagger$

Review: "Profile hidden Markov models" by Eddy SR. Bioinformatics. 1998;14(9):755-63.

HMM-Profiles:
-Given an alignment, can estimate parameters
-Emission Probabilities
-Transition probabilities

- Pfam database of HMM-profiles
www.sanger.ac.uk/Software/Pfam/
-Given an HMM and another sequence, can find best alignment by Viterbi (i.e. DP)
-Can iterate between those steps (EM): start with unaligned sequences and end up with an alignment and a model that represents the family

Limitations: over-fitting from small sample sizes use of priors can help
choice of model architecture, refinement weighting of sequence contributions

Parameters obtained from an alignment

- All of the transition and emission probabilities can be obtained from the alignment just by "counting" how often each occurs
- Need a large sample size to estimate all of the parameters accurately
- Can add pseudocounts to avoid 0's - Laplace "add 1" rule is common
- Can use more complex priors (Dirichlet) that differ for different residues and even mixtures of Dirichlet priors

Find best alignment of a sequence to an HMM

Viterbi algorithm

$$
\begin{gathered}
V_{j}^{M}(i)=\log \frac{e_{M_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
V_{j-1}^{M}(i-1)+\log a_{M_{j-1} M_{j}} \\
V_{j-1}^{I}(i-1)+\log a_{I_{j-1} M_{j}} \\
V_{j-1}^{D}(i-1)+\log a_{D_{j-1} M_{j}}
\end{array}\right. \\
V_{j}^{I}(i)=\log \frac{e_{I_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\max \left\{\begin{array}{l}
V_{j-1}^{M}(i-1)+\log a_{M_{j-1} I_{j}} \\
V_{j-1}^{I}(i-1)+\log a_{I_{j-1} I_{j}} \\
V_{j-1}^{D}(i-1)+\log a_{D_{j-1} I_{j}}
\end{array}\right. \\
V_{j}^{D}(i)=\max \left\{\begin{array}{l}
V_{j-1}^{M}(i-1)+\log a_{M_{j-1} D_{j}} \\
V_{j-1}^{I}(i-1)+\log a_{I_{j-1} D_{j}} \\
V_{j-1}^{D}(i-1)+\log a_{D_{j-1} D_{j}}
\end{array}\right.
\end{gathered}
$$

Flgure 8. Parts of the final globia model. The position nambers are shown in the delete states.

Find probability that a sequence is "generated" by an HMM

Figure 1. The model.

Forward algorithm

$$
\begin{gathered}
F_{j}^{M}(i)=\log \frac{e_{M_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\log \left\{\begin{array}{l}
a_{M_{j-1} M_{j}} \exp \left(F_{j-1}^{M}(i-1)\right) \\
+a_{I_{j-1} M_{j}} \exp \left(F_{j-1}^{I}(i-1)\right) \\
+a_{D_{j-1} M_{j}} \exp \left(F_{j-1}^{D}(i-1)\right)
\end{array}\right. \\
F_{j}^{I}(i)=\log \frac{e_{I_{j}}\left(x_{i}\right)}{q_{x_{i}}}+\log \left\{\begin{array}{l}
a_{M_{j-1} I_{j}} \exp \left(F_{j-1}^{M}(i-1)\right) \\
+a_{I_{j-1} I_{j}} \exp \left(F_{j-1}^{I}(i-1)\right) \\
+a_{D_{j-1} I_{j}} \exp \left(F_{j-1}^{D}(i-1)\right)
\end{array}\right. \\
F_{j}^{D}(i)=\log \left\{\begin{array}{l}
a_{M_{j-1} D_{j}} \exp \left(F_{j-1}^{M}(i-1)\right) \\
+a_{I_{j-1} D_{j}} \exp \left(F_{j-1}^{I}(i-1)\right) \\
+a_{D_{j-1} D_{j}} \exp \left(F_{j-1}^{D}(i-1)\right)
\end{array}\right.
\end{gathered}
$$

Acknowledgement

Most of the slides in this chapter were provided by Prof. Gary Stormo.

