Course organization

- Introduction (Week 1-2)
 - Course introduction
 - A brief introduction to molecular biology
 - A brief introduction to sequence comparison
- Part I: Algorithms for Sequence Analysis (Week 3 11)
 - Chapter 1-3, Models and theories
 - » Probability theory and Statistics (Week 4)
 - » Algorithm complexity analysis (Week 5)
 - » Classic algorithms (Week 6)
 - » Lab: Linux and Perl
 - Chapter 4, Sequence alignment (week 7)
 - Chapter 5, Hidden Markov Models (week 8)
 - Chapter 6. Multiple sequence alignment (week 10)
 - Chapter 7. Motif finding (week 11)
 - Chapter 8. Sequence binning (week 11)
- Part II: Algorithms for Network Biology (Week 12 16)

Chapter 3: Dynamic Programming

Chaochun Wei Fall 2014

Contents

- Reading materials
- Introduction
 - Dynamic programming
 - Greedy algorithm

Reading

Cormen book:

Thomas, H., Cormen, Charles, E., Leiserson, and Ronald, L., Rivest. Introduction to Algorithms, The MIT Press.

(read Chapter 16 and 17, page 299-355).

Dynamic programming

- Find an optimal solution to a problem
- Four steps to develop a dynamic programming algorithm
 - 1. Characterize the structure of an optimal solution
 - 2. Recursive formula for an optimal solution
 - 3. Compute the value of an optimal solution
 - 4. Construct an optimal solution from the computed information

Elements of dynamic programming

- Two elements are required
 - 1. Optimal substructure
 - An optimal solution contains within it optimal solutions to the subproblems
 - 2. Overlapping subproblems
 - Recursive formula exists

Needleman/Wunsch global alignment (1970)

- Two sequences $X = x_1...x_n$ and $Y = y_1...y_m$
- Let F(i, j) be the optimal alignment score of $X_{1...i}$ of X up to x_i and $Y_{1...i}$ of Y up to Y_j ($0 \le i \le n$, $0 \le j \le m$), then we have

$$F(0,0) = 0$$

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$$

Needleman/Wunsch global alignment (1970)

$$F(0,0) = 0$$

$$F(i,j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$$

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

	Α	А	G
Α			
G			
С			

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

		А	А	G
	0			
Α				
G				
С				

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

		А	А	G
	0 -	-5 →	-10 →	-15
Α	-5			
G	-10			
С	-15			

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Traceback

- 1. Start from the lower right corner and trace back to the upper left.
- 2. Each arrow introduces one character at the end of each aligned sequence.
- 3. A <u>horizontal</u> move puts a gap in the <u>left</u> sequence.
- 4. A vertical move puts a gap in the top sequence.
- 5. A diagonal move uses one character from each sequence.

- Start from the lower right corner and trace back to the upper left.
- 2. Each arrow introduces one character at the end of each aligned sequence.
- 3. A horizontal move puts a gap in the left sequence.
- 4. A vertical move puts a gap in the top sequence.
- 5. A diagonal move uses one character from each sequence.

Exercise

- Find Global alignment
 - X=catgt
 - Y=acgctg
 - Score: d=-1 mismatch=-1 match=2

Answer

Local alignment

- A single-domain protein may be homologous to a region within a multi-domain protein.
- Usually, an alignment that spans the complete length of both sequences is not required.

Smith/Waterman local alignment (1981)

- Two sequences $X = x_1...x_n$ and $Y = y_1...y_m$
- Let F(i, j) be the optimal alignment score of $X_{1...i}$ of X up to x_i and $Y_{1...j}$ of Y up to Y_j ($0 \le i \le n$, $0 \le j \le m$), then we have

$$F(0,0) = 0$$

$$F(i,j) = \max \begin{cases} 0 \\ F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) - d \\ F(i, j-1) - d \end{cases}$$

Local alignment

- Two differences with respect to global alignment:
 - No score is negative.
 - Traceback begins at the highest score in the matrix and continues until you reach 0.
- Global alignment algorithm: Needleman-Wunsch.
- Local alignment algorithm: Smith-Waterman.

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

	Α	Α	G
Α			
G			
С			

F(i-1, j-1)	0	F(i, j-1)
	$s(x_i, y_j)$	d
F(i-1,j)	→ d-	$\rightarrow F(i,j)$

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

		А	A	G
	0	0	0	0
Α	0			
G	0			
С	0			

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal local alignment of AAG and AGC.

Use a gap penalty of d=-5.

		Α	Α	G
	0	0	0	0
Α	0	2	2	0
G	0	0	0	4
С	0	0	0	0

F(i-1, j-1)	0	F(i, j-1)
	$s(x_i, y_j)$	d
F(i-1,j)	→ d-	$\rightarrow F(i,j)$

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal local alignment of AAG and AGC.

Use a gap penalty of d=-5.

		А	Α	G
	0	0	0	0
Α	0	2	2	0
G	0	0	0	4
С	0	0	0	0

AG

AG

Local alignment

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal local alignment of AAG and GAAGGC.

Use a gap penalty of d=-5.

F(i-1, j-1)	F(i, j-1)	
	$s(x_i, y_j)$	
F(i-1,j)	$\rightarrow d \longrightarrow F(i,j)$	

		Α	А	G
	0	0	0	0
G	0			
Α	0			
Α	0			
A G G	0			
G	0			
С	0			

Local alignment

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal local alignment of AAG and GAAGGC.

Use a gap penalty of d=-5.

F(i-1, j-1)	0	F(i, j-1)
	$s(x_i, y_j)$	$\frac{\dagger}{d}$
F(i-1,j)	$\rightarrow d$	F(i,j)

		Α	А	G
	0	0	0	0
G	0	0	0	2
Α	0	2	2	0
A	0	2	4	0
G	0	0	0	6
⟨ G G G C C C C C C C C C C C C C C	0	0	0	2
С	0	0	0	0

Greedy algorithm: Choose the best at the moment

- Not always produce the optimal result
- Two elements are required to find an optimal solution by greedy algorithm
 - 1. Greedy-choice property
 - Global optimal can be reached by local optimal (greedy)
 - 2. Optimal substructure
 - An optimal solution contains within it optimal solutions to the subproblems

Greedy Algorithm

- Example: Activity-selection problem
 - N activities: S={1, 2, ..., N}. Only one can be held at a time.
 Select the maximum number of mutually compatible activities

Let s_i and f_i be the start time and finish time for activity i. Assume $f_1 \le f_2 \le ... \le f_N$

```
GREEDY_ACTIVITY_SELECTION(s,f)

1 N \leftarrow length[s]

2 A\leftarrow {1}

3 J\leftarrow 1

4 for i \leftarrow 2 to N

5 do if s_i >= f_j

6 then A\leftarrow A U {i}

7 j\leftarrow i

8 Return A
```

Acknowledgement

PPTs for examples in dynamic programming are kindly provided by Dr. Qi Liu.