Course organization

- Introduction (Week 1-2)
 - Course introduction
 - A brief introduction to molecular biology
 - A brief introduction to sequence comparison
- Part I: Algorithms for Sequence Analysis (Week 3 11)
 - Chapter 1-3, Models and theories
 - » Probability theory and Statistics (Week 4)
 - » Algorithm complexity analysis (Week 5)
 - » Classic algorithms (Week 6)
 - » Lab: Linux and Perl
 - Chapter 4, Sequence alignment (week 7)
 - Chapter 5, Hidden Markov Models (week 8)
 - Chapter 6. Multiple sequence alignment (week 10)
 - Chapter 7. Motif finding (week 11)
 - Chapter 8. Sequence binning (week 11)
- Part II: Algorithms for Network Biology (Week 12 16)

Chapter 5 Hidden Markov Models

Chaochun Wei Fall 2014

Contents

- Reading materials
- Introduction to Hidden Markov Model
 - Markov chains
 - Hidden Markov Models
 - Three problems of HMMs
 - Calculate the probability from observations and the model
 - Parameter estimation for HMMs

Reading

- Rabiner, L.(1989) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2) 257-286
- Rabiner, L., and Juang, Biing-Hwang, (1993), Fundamentals of Speech Recognition, Prentice Hall.

Hidden Markov Model

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$\pi^* = \arg\max P(x,\pi)$$

Hidden Markov Model

- Elements of an HMM (N, M, A, B, Init)
 - 1. N: number of states in the model
 - $S=\{S_1, S_2, ..., S_N\}$, and the state at time t is q_t .
 - 2. M: alphabet size (the number of observation symbols)
 - V={v₁, v₂, ..., v_M}
 - 3. A: state transition probability distribution
 - A= $\{a_{ij}\}$ where $a_{ij}=P[q_{t+1}=S_i|q_t=S_i], 1 \le i,j \le N$
 - 4. E: emission probability
 - E= $\{e_j(k)\}$ (observation symbols probability distribution in state j), where $e_i(k)=P[v_k \text{ at } t \mid q_t = S_i\}$, $1 \le i \le N$, $1 \le k \le M$
 - 5. Init: initial state probability, π_i
 - Init= $\{\mathcal{T}_i\}$, where \mathcal{T}_i =P[q_1 = S_i], $1 \le i \le N$.

HMM is a generative model

- HMM can be used as a generator to produce an observation sequence $O=O_1O_2...O_T$, where each O_t is one of the symbols from V, and T is the number of observations in the sequence.
 - 1. Choose an initial state $q_1=S_i$ according to Init;
 - 2. Set t=1;
 - 3. Choose $O_t=v_k$ according to $e_i(k)$ (the symbol probability distribution in state S_i);
 - 4. Transit to a new state $q_{t+1}=S_j$ according to a_{ij} ;
 - 5. Set t=t+1; return to step 3 if t<T; otherwise terminate the procedure.

HMM is a generative model

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

$$P(x,\pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T} (a_{\pi_i \pi_{i+1}} e_{\pi_{i+1}}(x(i)))$$

HMM is a generative model

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

TTHHT Observed sequence x

11221 Hidden state sequence

T

$$\begin{split} &P(x,\pi \mid \lambda) = Init_{\pi_0} * e_{\pi_0}(x(0)) * \prod_{0 \le i \le T} (a_{\pi_i \pi_{i+1}} e_{\pi_{i+1}}(x(i)) \\ &= 1 * e_1(T) * (a_{11}e_1(T)) * (a_{12}e_2(H)) * (a_{22}e_2(H)) * (a_{21}e_1(T)) \\ &= 1 * 0.2 * (0.9 * 0.2) * (0.1 * 0.3) * (0.2 * 0.3) * (0.1 * 0.2) = 0.000001296 \end{split}$$

Hidden Markov Model

• HMM: $\lambda = \{A, B, Init\}$

• Three basic problems for HMMs

- Problem 1: Given the observation sequence $O=O_1O_2...O_T$, and a model $\lambda=\{A, B, Init\}$, how to compute $P(O \mid \lambda)$, the probability of the observation sequence given the model?
- Problem 2: Given the observation sequence $O=O_1O_2...O_T$, and a model $λ={A, B, Init}$, how to choose a corresponding state sequence $Q=q_1q_2...q_T$, which is optimal in some meaningful sense..
- Problem 3: how to estimate model parameters λ ={A, B, Init} to maximize P(O| λ).

Most Probable Path and Viterbi Algorithm

Solution to problem 2

Viterbi for the HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

Observed sequence x TTHHT **11221** Hidden state sequence π Н Н 3 0 =max0.2*(0.018662*0 0.2 Max 0.8 * *0.9, 0.014*0.7) (0.0259*0.9, .9, 0.000777*0.7) = 9 *6.2, 0) 0.0108*0.7)= 0.003359 = 0.036 = 0.02590.018662 Max0.7*(0. 0 Max0.3*(0.036) Max0.3(0.0259*0.1, =max0.3(0.018662*0.1, 2*0.1, *0.1, 0.014*0.2) 0.0108*0.2)=0.000 0.000777*0.7) =0) 2 = 0.0108 = 0.0140.0005599

Probability of All the Possible Paths and Forward Algorithm

Let
$$f_j(i) = \Pr(x_0, ..., x_i, \pi_i = j)$$

$$f_j(0) = \pi_j e_j(x_0)$$

Recursion (i=1...L;
$$f_j(i) = e_j(x_i) \sum_{k} (f_k(i-1)a_{kj})$$

$$j = 1, ..., N$$

Probability of all the probable paths
$$P(x) = \sum_{k} P(x, \pi) = \sum_{k} f_k(L)$$

Solution to problem 1

Posterior Probability and Forward and Backward Algorithm

$$P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)}$$

Backward Algorithm

Let
$$b_j(i) = \Pr(x_{i+1}, x_{i+2}, \dots, x_L, \pi_i = j)$$

$$b_j(L) = 1$$

Recursion (i=L-1, L-2, ..., 0,
$$b_j(i) = \sum_k (a_{jk}e_k(x_{i+1}))b_k(i+1)$$
 j=1, ..., N)

Probability of all the probable paths

$$P(x) = \sum_{\pi} P(x, \pi) = \sum_{k} b_{k}(0)$$

Posterior Probability and Forward and Backward Algorithm

Posterior Probability
$$P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)}$$

$$= \frac{f_k(i) * b_k(i)}{\sum (f_k(i) * b_k(i))}$$

Problem 3: Optimize the model parameters from the observation

- HMM: $\lambda = \{A, B, Init\}$
- With annotations
 - Maximum likely-hood ratio
- Without annotations
 - Baum-Welch algorithm (EM algorithm)

Baum-Welch algorithm (estimate model parameters)

- Goal: given the observation sequence data set, estimate the model parameter λ to maximize P(O| λ).
- Algorithm:
 - 1. initialize the model λ_0 ,
 - 2. calculate the new model λ based on λ_0 and the observation sequences
 - 3. stop training if log $P(X|\lambda)$ log $(P(X|\lambda_0)$ < Delta
 - 4. otherwise, let $\lambda_0 = \lambda$, and go to step 2.

Baum-Welch method (EM method)

• HMM: $\lambda = \{A, B, Init\}$, Without annotations

Let
$$\xi_t(i,j) = P(\pi_t = i, \pi_{t+1} = j \mid x, \lambda)$$
 then
$$\xi_t(i,j) = \frac{f_i(t)a_{ij}e_j(x_{t+1})b_j(t+1)}{\sum\limits_{i=j}^{N} \sum\limits_{j=1}^{N} (f_i(t)a_{ij}e_j(x_{t+1})b_j(t+1))}$$
 Let
$$\gamma_t(i) = \sum\limits_{j=1}^{N} \xi_t(i,j)$$
 then
$$\sum\limits_{t=0}^{L} \gamma_t(i) = \text{expected number of transitions from S}_i$$

$$\sum\limits_{t=0}^{L} \xi_t(i,j) = \text{expected number of transition S}_i \text{ to S}_j$$

Baum-Welch method (EM method) (2)

• HMM: $\lambda = \{A, B, Init\}$, Without annotations

Then, \overline{Init}_i = expected frequency in S_i at time 0 = $\gamma_0(i)$

$$\frac{-}{a_{i,j}} = \frac{\exp{ected} \quad number \quad of \quad tranistions \quad from \quad S_i \quad to \quad S_j}{\exp{ected} \quad number \quad of \quad tranistions \quad from \quad S_i}$$

$$= \frac{\sum\limits_{t=0}^{L} \xi_t(i,j)}{\sum\limits_{t=0}^{L} \gamma_t(i)}$$

$$\frac{1}{e_i(k)} = \frac{\exp ected \quad number \quad of \quad times \quad in \quad state \quad j \quad and \ observing \quad symbol \quad v_k}{\exp ected \quad number \quad of \quad times \quad in \quad state \quad j}$$

$$= \frac{\sum_{t=0}^{L} \gamma_t(i)}{\sum_{t=0}^{L} \gamma_t(i)}$$

Gene Structure

A gene is a highly structured region of DNA, it is a functional unit of inheritance.

A Typical Human Gene Structure

Gene Prediction Model

- Generalized HMM
- Each feature in a gene structure corresponds to one state.
- State-specific length models.
- State-specific sequence models
- Use Conservation information

Examples of

Hidden Markov Model (HMM)

HMM for two biased coins flipping

$$e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7$$

Hidden Markov Model

- Elements of an HMM (N, M, A, B, Init)
 - 1. N: number of states in the model
 - S={S₁, S₂, ..., S_N}, and the state at time t is q_t.
 - 2. M: alphabet size (the number of observation symbols)
 - V={v₁, v₂, ..., v_M}
 - 3. A: state transition probability distribution
 - A= $\{a_{ii}\}$ where $a_{ii}=P[q_{t+1}=S_i | q_t=S_i], 1 \le i,j \le N$
 - 4. E: emission probability
 - E= $\{e_j(k)\}$ (observation symbols probability distribution in state j), where $e_i(k)=P[v_k \text{ at } t \mid q_t = S_i\}$, $1 \le j \le N$, $1 \le k \le M$
 - 5. Init: initial state probability, π_i
 - Init= $\{\pi_i\}$, where π_i =P[q_1 = S_i], $1 \le i \le N$.

Hidden Markov Model

• HMM: λ={A, B,Init}

• Three basic problems for HMMs

- Problem 1: Given the observation sequence $O=O_1O_2...O_T$, and a model $\lambda=\{A, B, Init\}$, how to compute $P(O \mid \lambda)$, the probability of the observation sequence given the model?
- Problem 2: Given the observation sequence $O=O_1O_2...O_T$, and a model $λ={A, B, Init}$, how to choose a corresponding state sequence $Q=q_1q_2...q_T$, which is optimal in some meaningful sense..
- Problem 3: how to estimate model parameters $\lambda = \{A, B, Init\}$ to maximize $P(O \mid \lambda)$.

A case study

Flipping two coins

Problem 1: Given the observation sequence $O=O_1O_2...O_7$, and a model $\lambda=\{A, B, Init\}$, how to compute $P(O \mid \lambda)$, the probability of the observation sequence given the model?

- O= HHTHHTTTHT
- $P(O|\lambda)=?$

Forward Algorithms

	Н	Н	Т	Н	Н	Т	Т	Т	Н	Т	End
Α	0.45	0.18	0.073 42	0.031 44	0.013 06	0.053 71	0.023 45	0.001 11	5.817 e-4	2.580 e-4	2.42
В	0.02	0.02 05	0.041 45	0.009 83	0.002 86	0.003 94	0.003 49	0.002 73	5.067 e-4	4.329 e-4	3e-5

Let
$$f_i(i) = \Pr(x_0, ..., x_i, \pi_i = j)$$

probable paths

Initialization (j=1...N)
$$f_j(0) = \pi_j e_j(x_0)$$

Recursion (i=1...L;
$$f_j(i) = e_j(x_i) \sum_k (f_k(i-1)a_{kj})$$

$$j = 1, ..., N)$$
 Probability of all the probable paths
$$P(x) = \sum_k P(x, \pi) = \sum_k f_k(L)$$

Problem 2: Given the observation sequence $O=O_1O_2...O_7$, and a model $\lambda=\{A, B, Init\}$, how to choose a corresponding state sequence $Q=q_1q_2...q_7$, which is optimal in some meaningful sense..

- O= HHTHHTTTHT
- argmax(P(O, Q, λ))

Viterbi Algorithms

A->A->A->B->B->B->B

		Н	Н	Т	Н	Н	Т	Т	Т	Н	Т	End
Α	4	0.45	0.18	0.072	0.028 8	0.011 5	0.004 6	1.843 e-3	7.372 e-4	2.949 e-4	1.180 e-4	4.68
В	4	0.02	0.01 71	0.027 4	4.652 e-3	1.109 e-3	1.751 e-3	1.191 e-3	8.097 e-4	1.376 e-4	9.360 e-5	

Let
$$f_{j}(i) = \max_{\{\pi_{0},...,\pi_{i-1}\}} (\Pr(x_{0},...,x_{i-1},x_{i},\pi_{0},...,\pi_{i-1},\pi_{i}=j))$$

Initialization (j=1...N)
$$f_j(0) = \pi_j e_j(x_0)$$

Recursion (i=1...L)

$$f_j(i) = e_j(x_i) \max_k (f_k(i-1)a_{kj});$$

 $ptr_j(i) = \arg\max_k (f_k(i-1)a_{kj}).$

Problem 3. Model parameter estimation

See

- Rabiner, L.(1989) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2) 257-286
- Rabiner, L., and Juang, Biing-Hwang, (1993),
 Fundamentals of Speech Recognition, Prentice Hall.

Another example: Pair HMM for local alignment

