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Hidden Markov Model

 Elements of an HMM (N, M, A, B, Init)

1. N: number of states in the model
* 5={S,, S,, ..., Sy}, and the state at time t is q,.

2. M: alphabet size (the number of observation symbols)
* V={v,, v,, ..., V\y}

3. A:state transition probability distribution
* A={a;} where a;=P[q,,,=S5;|9,=S}], 1<i,j <N

4. E:emission probability

* E={g;(k)} (observation symbols probability distribution in state
j), where g;(k)=P[v, at t | g, = S} 1<j<N, 1<k <M

5. Init: initial state probability, .

I
* Init={77;}, wheresT;=P[q,=S], 1 <i <N.



HMM is a generative model

e HMM can be used as a generator to produce an
observation sequence 0=0,0,...0;, where each O, is
one of the symbols from V, and T is the number of
observations in the sequence.

Choose an initial state q,=S, according to Init;
2. Sett=1;

3. Choose O,=v, according to e (k) (the symbol probability
distribution in state S,);

4. Transit to a new state q,,,=S; according to a;;

5. Set t=t+1; return to step 3 if t<T, otherwise terminate
the procedure.



HMM is a generative model
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HMM is a generative model
HMM for two biased coins flipping

0.9

e,(H)=0.8,¢(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

Hidden state sequence /s

P(x,z|A)=Init_*e_ (x(O))*O<i1'£T(a,[ime%1 (x(1))

=17e,(T)* (a8, (T)) ™ (a8, (H)) * (a8, (H)) * (a,,8,(T))
=1%0.2%(0.9*0.2)*(0.1*0.3)*(0.2*0.3)*(0.1*0.2) = 0.00000129 6



Hidden Markov Model

« HMM: A={A, B,Init}
* Three basic problems for HMMs

— Problem 1: Given the observation sequence 0=0,0,...0;, and
a model A={A, B, Init}, how to compute P(O| A), the probability
of the observation sequence given the model?

— Problem 2: Given the observation sequence 0=0,0,...0,, and
a model A={A, B, Init}, how to choose a corresponding state
sequence Q=q,0Q,...0y, Which is optimal in some meaningful
sense..

— Problem 3: how to estimate model parameters A={A, B, Init}
to maximize P(O]| A).



states

Most Probable Path and Viterbi Algorithm

o 1 2 -1 i 1 L
1 @ ® @ o0 O o o ceoe @ ®
2 @ @ @ eco @ or%\‘o cee @ @
Let ()= max (Pr(Xgs..o Xiq, Xis geees Tigs 7T, = )

{7y, 71}
Initialization(J 1...N) fj(O) =77,€;(X;)
Recursion (i=1...L)

fj ()= € (%) mgx(fk ( _1)akj);

ptr; (1) = arg max (f.(1—Da).

Time complexity O(N“L)  space complexity O(NL)

Solution to problem 2
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Viterbi for the HMM for two biased coins flipping

0.9

e,(H)=0.8,e,/(T)=0.2,e,(H)=0.3,e,(T)=0.7

TTHHT Observed sequence x

=max0.2*(0.018662*0
.9, 0.000777*0.7) =

0.0108*0.7 ) = 0.003559
0.018662

=max0.3(0.018662*0.1,
)00777%*0.7) =
0.0005599



Probability of All the Possible Paths and Forward

Algorithm
" o) 1 2 I-1 i L-1 L
o 1 ® ® @ o000 O ® ® e @ ®
S +\A
n 2 © ® @ o0 O ® ® e @ ®

et T,(1)=Pr(Xg,... X;, 7, = ])
Initialization (j=1...N) f.(0)=me;(x)

Recursion (i=1...L; fj (1) = €; (Xi)Z(fk (1 _1)akj)
=1, .. N) ‘

Probabillity of all the
probable paths P(X) = Z P(X,7) = Z f, (L)

Solution to problem 1
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Posterior Probability and Forward and Backward

Algorithm
" 0 1 2 -1 i L-1 L
o 1 © o @ o000 O o o ceoe @ o
T
2 2 @ @ @ see @ o‘+/o cee © ®

Posterior Probability P(z. =K | X) = P(ﬂl_l)(: ;<’ X)
X
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states

N

Backward Algorithm

0 1 2 i-1 i -1 L
® o @ occc @ Y @ o0 O Y
® o @ eccc O o‘+/o coe @ ®

Let bj (1) = Pr(xi+1’ Kipgrn KW 7T = J)

Initialization (j=1...N)

Recursion (i=L-1, L-2, ..
=1, ..., N)

Probabillity of all the
probable paths

b (L) =1
-+ 0, b; (1) = Z(ajkek (X))o (1+1)

P(x) = P(x,7) = b(0)
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Posterior Probability and Forward and Backward

Algorithm
0 1 2 i-1 i -1 L
§ 1 ® ® @ ocecc O o () eee @ ®
% 2 @ ® @ ccc O ® /. ceoe @ ®
Posterior Probability  P(z;, =K|X) = P(7; =k, X)
P(x)
f (1) *b, (i)

=S (5,() b, (i)
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Problem 3: Optimize the model parameters
from the observation

 HMM: A={A, B, Init}
 With annotations

— Maximum likely-hood ratio

* Without annotations
— Baum-Welch algorithm (EM algorithm)



Baum-Welch algorithm
(estimate model parameters)

 Goal: given the observation sequence data set,
estimate the model parameter A to maximize P(O| A).

* Algorithm:
1. initialize the model A,

2. calculate the new model A based on A, and the observation
sequences

3. stop training if log P(X|A) - log(P(X|%,) < Delta

4. otherwise, let A, = A, and go to step 2.



Baum-Welch method (EM method)

 HMM: A={A, B, Init}, Without annotations

Let & (1, ]))=P(r, =7, =]|XA)
f;(0)a;;e; (X, ,)b; (t+1)

1]

then S: (I, J) = ¥ x
ZE(f,(Da €, (%..)b; (t +1)

et 7)== &G, )
L

then tzo Vi (|) = expected number of transitions from S,
L
tZO é:t (I, j) = expected number of transition S;to S;



Baum-Welch method (EM method) (2)
 HMM: A={A, B, Init}, Without annotations

Then, |nit; = expected frequency in S;attime 0=} (|)

—  expected number of tranistions from S, to S,

ai,j = -
J expected number of tranistions from S
L
_Zal))
L -
2 7. (1)
: (k)_expected number of times in state | andoberving symbol v,
| expected number of times iIn state |
L
> ()
g.:t(.)xt:vk




Gene Structure

Initial Internal

Exon Exon Terminal

Exon
Intron

‘ \ATG 64 \ ‘
5'UTR AG TAA 3'UTR
TAG
TGA

A gene is a highly structured region of DNA, it is a functional unit of inheritance.
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A Typical Human Gene Structure
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Gene Prediction Model
Generalized HMM

Each feature in a gene
structure corresponds to one
state.

State-specific length models.

Exon Exon

State-specific sequence models
Use Conservation information <,5§_$ Exon
ng

Prom

T
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Hidden Markov Model (HMM)



HMM for two biased coins flipping
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Hidden Markov Model

* Elements of an HMM (N, M, A, B, Init)

1. N: number of states in the model
* S={S,, S,, ..., Sy}, and the state at time t is q..
2. M: alphabet size (the number of observation symbols)
* V={v,, v,, ..., vy}
3. A: state transition probability distribution
* A={a;} where a;=P[q,,,=5;]q,;=S]], 1<i,j <N
4. E: emission probability
* E={g,(k)} (observation symbols probability distribution in state
j), where e,(k)=P[v, att | q,=S}, 1 <j <N, 1<k <M
5. Init: initial state probability, 7,

[

* Init={/T }, where/T .=P[q,=5], 1 <i <N.



Hidden Markov Model

* HMM: A={A, B,Init}
* Three basic problems for HMMs

— Problem 1: Given the observation sequence 0=0,0,...0;, and
a model A={A, B, Init}, how to compute P(O| A), the probability
of the observation sequence given the model?

— Problem 2: Given the observation sequence 0=0,0,...0,, and
a model A={A, B, Init}, how to choose a corresponding state
sequence Q=q,q,...q;, Which is optimal in some meaningful
sense..

— Problem 3: how to estimate model parameters A={A, B, Init}
to maximize P(O| A).



A case study

* Flipping two coins

{\ 0.8

0.9 Coin A T 05
' A 0.01
/7 \
0.19 Io_l
}A ﬂ; H: 0.2

U 0.85



Problem 1: Given the observation sequence 0=0,0,...0,, and

a model A={A, B, Init}, how to compute P(O| A), the probability
of the observation sequence given the model?

e O= HHTHHTTTHT
. P(O|A)=?



Forward Algorithms

Initialization (j=1...N)

Recursion (i=1...L;

J=1,
Probability of all the

probable paths

. N)

1:(0)=7,e,(x))
[, =e,(x)D> (fi,(i-Day)

P(x)=Y P(x.7)= fi(L)

H H T H H T T T H T End
A 045 | 0.18 0.073 | 0.031 | 0.013 | 0.053 | 0.023 | 0.001 |5.817 | 2.580
' . 42 44 06 71 45 11 e-4 e-4 2 42
B 0.02 | 0.02 |0.041 | 0.009 |0.002 |0.003 [0.003 |0.002 |5.067 |4.329 | 3e-5
05 45 83 36 94 49 73 e-4 e-4
—
" 0 2 i-1 [ L-1 L
2 1 @ @ eo°* O ® ® eee @ L
"E 2 @ @ e O ® +\A. eee O e
Let  f,(0)=Pr(x,,....,x,, 7, = J)




Problem 2: Given the observation sequence 0=0,0,...0,, and
a model A={A, B, Init}, how to choose a corresponding state
sequence Q=q,0q,...qy, Which is optimal in some meaningful
sense..

* O=HHTHHTTTHT

e argmax(P(O, Q, A))
Q



Viterbi Algorithms

A->A->A->SA->A->B->B->B->B->B
H H T H H T T T H T End
A 0.072 | 0.028 ,0.011 10.004 | 1.843 | 7.372 [2.949 | 1.180
* 0'4510'18 : 8 5 6 *e-3 *e-él *e—él *e—4 4.68
B 002 | 0.01 |0.02744.652 (1.109 |1.751 | 1.191, 8.097 |11.376 | 9.360 |} Oe-6
* 71 4 e-3 e-3 e-3 *e-3 *e-él e-4 *e—S ?
> [\
m 1 2 i-1 i L-1 L N coin
9o ® @ o0 @ ® @ o0 @ ® ' A
8 7
7 ° @ o0 @ oﬁ-\o

fj. (i) = {"ll-ﬂ}“{ }(Pr(xﬂ ST G
p'ﬂo — I-_l

Initialization (j=1...N)
Recursion (i=1...L)

1:(0)=7,e;(x,)

[ () =e;(x,)max (£, (71— Day):
ptr; (i) = argmax (f, (7 — Day,).

0.19 I

%
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Problem 3. Model parameter estimation

e See

® Rabiner, L.(1989) A Tutorial on Hidden Markov
Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE, 77 (2) 257-
286

® Rabiner, L., and Juang, Biing-Hwang, (1993),
Fundamentals of Speech Recognition, Prentice
Hall.



Another example:
Pair HMM for local alighment




