

Programming Language for Bioinformatics

生物计算编程语言

Chaochun Wei Shanghai Jiao Tong University Spring 2014

Contents

- Programming languages for Bioinformatics
- Course information
 - Goal
 - Contents
 - Organization
 - Grading

How many programming languages you know?

C

C++

Pascal

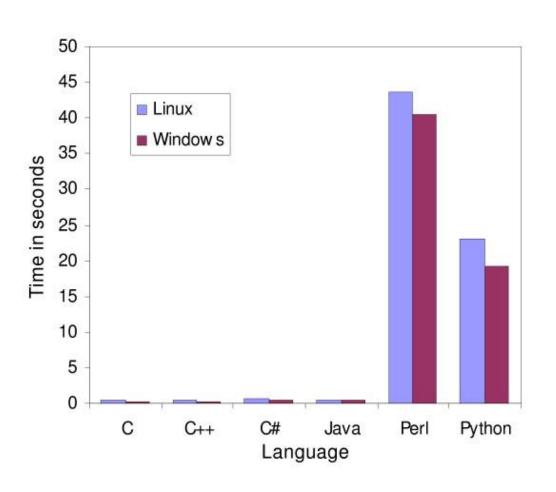
Java

Basic

Perl

Python

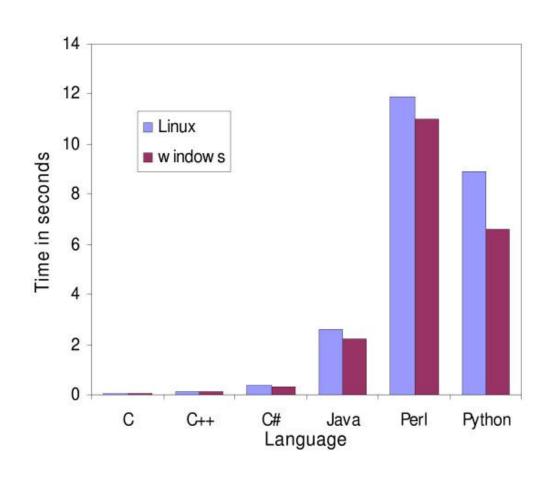
Rubby


- - -

Matlab

Mathematica

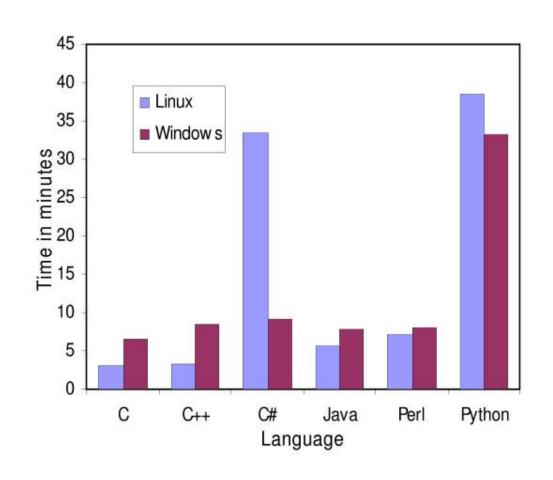
R



Speed comparison of the global alignment program. Speed comparison of the global alignment algorithm using a gap penalty of 10 implemented in C, C++, C#, Java, Perl and Python. The programs were run on Linux and Windows platforms. Two DNA sequences of 3216 bp

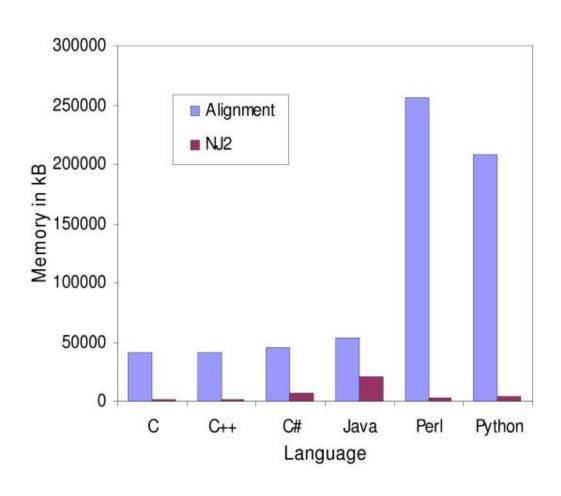
and 3217 bp were used.

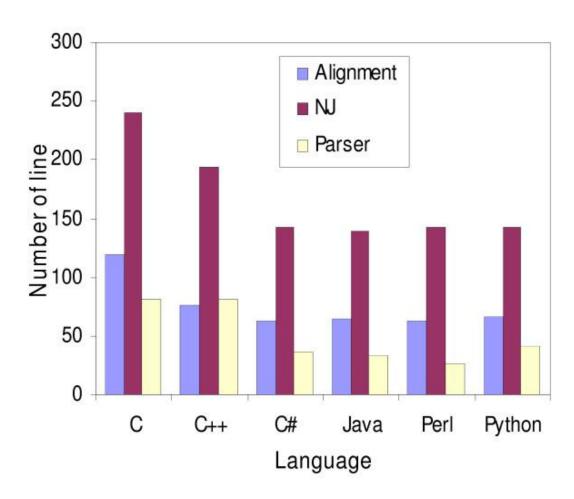
BMC Bioinformatics. 2008; 9: 82.



Speed comparison of the Neighbor-Joining program.

Speed comparison of the Neighbor-Joining algorithm using the Jukes-Cantor evolutionary model implemented in C, C++, C#, Java, Perl and Python. The programs were run on Linux and Windows platforms. The input file was an alignment of 76 DNA sequences.


BMC Bioinformatics. 2008; 9: 82.


Speed comparison of the BLAST parsing program. Speed comparison of the BLAST parsing program implemented in C, C++, C#, Java, Perl and Python. The programs were run on Linux and Windows platforms. The input file was a 9.8 Gb file from a BLASTP run.

Memory usage comparison of the Neighbor-Joining and global alignment programs. Memory usage comparison for the Neighbor-Joining and global alignment programs implemented in C, C++, C#, Java, Perl and Python. The programs were run on a Linux platform.

M Number of lines for each program. Number of lines for the global alignment, BLAST parser and Neighbor-Joining programs implemented in C, C++, C#, Java, Perl and Python.

BMC Bioinformatics. 2008; 9: 82.

Course goals

- Understand C programming language in general
- Learn how to write good code
- Learn how to work together
- Practice, practice and practice...

Course contents

- Introduction to C programming language
- *Programming skills other than languages
 - Debugging tools
 - Using open source communities
 - Keeping projects documented and manageable
 - Source code managing
 - Parallel computing
 - Understanding the hardware
 - Value your time

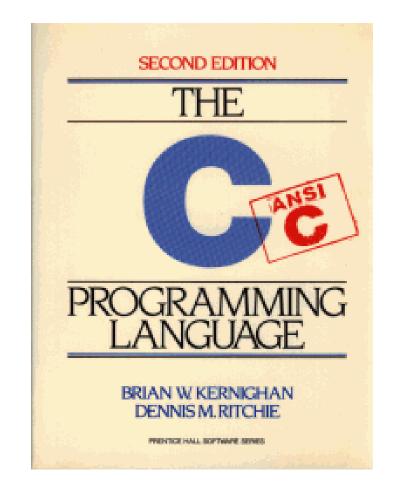
Course organization

- Course introduction (Week 1)
 - Code editor: Emacs
- Part I: Introduction to C programming language (Week 1 12)
 - Chapter 1: Overall Introduction (Week 1-4)
 - C
 - Unix/Linux
 - Chapter 2: Types, operators and expressions (Week 5)
 - Chapter 3: Control flow (Week 6)
 - Chapter 4: Functions and program structure (Week 7-8)
 - Chapter 5: Pointers and arrays (Week 9)
 - Chapter 6: Structures (Week 10)
 - Chapter 7: Input and Output (Week 11)
- Part II: Skills others than programming languages (Week 12- 14)
 - Debugging tools (Week 12-13)
 - Keeping projects documented and manageable (Week 14)
 - Source code managing (Week 14)
- Part III: Reports from the battle field (student forum) (Week 15 16)

Course organization (2)

- Thursday 14:00-15:40 (Every Week)
 - 生物药楼4号楼-225, 生信实验室
- Tuesday 8:00-9:40 (Even weeks)
 - 生物药楼4号楼-225, 生信实验室

Course features: this is a practice course and you need lots and lots of practices


Prerequisites

- Mathematics (no)
- Computer Science (no)
- Biology (no)

Text Book

The C Programming Language, Second Edition by Brian W. Kernighan and Dennis M. Ritchie. Prentice Hall, Inc., 1988.

References

- Text Editors
 - Emacs
 - tutorial: http://www.gnu.org/software/emacs/tour/
 - Manual: http://www.gnu.org/software/emacs/manual/emacs.pdf
- Debug Tools
 - GDB
 - Document: http://www.gnu.org/software/gdb/documentation/

Grading

Homework
50%

Projects30%

Design and implementation of a bioinformatics tool

Presentation20%

作业规定

- 作业允许合作,但是必须注明各人的贡献
- 作业报告必须用自己的语言独立完成
- 严禁抄袭
 - 抄袭者: 不及格(F)
 - 被抄袭者: 成绩降一级(A→B, B→C, C→D, D→F)

Course website

http://cbb.sjtu.edu.cn/~ccwei//pub/courses/ /2014/plb/plb.php

If you have any question, send me an email at: ccwei@situ.edu.cn