
Course organization

• Course introduction (Week 1)

• Code editor: Emacs

• Part I: Introduction to C programming language (Week 1 - 12)

• Chapter 1: Overall Introduction (Week 1-4)

– C

– Unix/Linux

• Chapter 2: Types, operators and expressions (Week 4)

• Chapter 3: Control flow (Week 5, 6)

• Chapter 4: Functions and program structure (Week 6- 7)

• Chapter 5: Pointers and arrays (Week 8-9)

• Chapter 6: Structures (Week 10 - 11)

• Chapter 7: Input and Output (Week 11-12)

• Part II: Skills others than programming languages (Week 12- 14)

• Debugging tools（Week 12-13）

• Keeping projects documented and manageable （Week 14）

• Source code managing （Week 14）

• Part III: Reports from the battle field (student forum) (Week 15 – 16) 1

Chapter 9 the Make tool

Chaochun Wei

Shanghai Jiao Tong University

Spring 2014

Contents

9.1 make

9.2 A simple Makefile

9.3 Writing Rules

9.4 How make works

9.5 Variables Simplify

9.6 make deduces

9.7 Cleanup

Reference: GNU make

http://www.gnu.org/software/make

/manual/make.html#Top

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/make/manual/make.html

9.1 Make

Make is a Unix utility tool, which

• Contains a set of instruction to build a large program;

• Determines automatically which pieces of the program

should be recompiled, and

• runs the compilation automatically

can be used to describe any task where some files

depends on others

To use make, you need to create a file called

Makefile

See more details on Makefile_1

9.2 A simple Makefile

Create a file called Makefile

make

comp:

 gcc -g -o test sort.c qsort.c

/home/ccwei/courses/2013/PLB/week6/getline.c

clean:

 rm test

Tab

Tab

9.3 Writing rules

A rule explains how and when to remake files(targets)

Rule Syntax

• A target is a file name or the name of an action

• A prerequisite is a file that is used as input to create the

target

• A recipe is a to create a target if any prerequisites change

• Every recipe lines start with a tab

targets : prerequisites

 recipe

 ...

9.3 Writing rules

Makefiles contain

1. Explicit rules

2. Implicit rules

3. Variable definition

4. Directives

5. Comments

• #

9.4 how make works

make

• Starts with the first target (default goal)

• Before make can fully process the rule, it must

process the files that the target depends on

• Other rules are processed because their targets are

prerequisites of the goal

• A rule is not processed if it is not depended on by

the goal unless the user tell make to do so (such as

make clean)

See more details on Makefile

9.5 Variables simplify makefile

Variables

• objects = list of object file names

• $(objects)

See more details on Makefile_4

objects = main.o qsort.o getline.o

q_sort: $(objects)

 gcc -o q_sort $(objects)

main.o: sort.c qsort.o getline.o

 gcc -o main.o -c sort.c

qsort.o: qsort.c getline.o

 gcc -o qsort.o -c qsort.c

9.6 Make deduces

Implicit rules for updating a “.o” file from

corresponding “.c” file using “gcc –c” command

See more details on Makefile_5

9.7 clean up

Make clean

Don’t put this line at the beginning of Makefile

clean:

 rm test *.o q_sort

