
Course organization  

• Course introduction ( Week 1) 

• Code editor: Emacs 

• Part I: Introduction to C programming language (Week 1 - 12) 

• Chapter 1: Overall Introduction (Week 1-4) 

– C 

– Unix/Linux  

• Chapter 2: Types, operators and expressions (Week 4) 

• Chapter 3: Control flow (Week 5, 6) 

• Chapter 4: Functions and program structure (Week 6- 7) 

• Chapter 5: Pointers and arrays (Week 8-9) 

• Chapter 6: Structures (Week 10) 

• Chapter 7: Input and Output (Week 11) 

• Part II: Skills others than programming languages (Week 12- 14) 

• Debugging tools（Week 12-13）  

• Keeping projects documented and manageable （Week 14） 

• Source code managing （Week 14） 

• Part III: Reports from the battle field (student forum) (Week 15 – 16) 1 
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5.1 Pointers and address 

For any type T, you may form a pointer type to T.  

• Pointers may reference a function or an object. 

• The value of a pointer is the address of the corresponding object or function 

• Examples: int *i; char *x; int (*myfunc)(); 

Pointer operators: * dereferences a pointer, & creates a pointer 
(reference to) 
• int i = 3; int *j = &i; 

*j = 4; printf(“i = %d\n”, i); // prints i = 4 

• int myfunc (int arg); 

int (*fptr)(int) = myfunc;  

i = fptr(4); // same as calling myfunc(4); 

Generic pointers: 

• Traditional C used (char *) 

• Standard C uses (void *) – these can not be dereferenced or used in pointer 
arithmetic. So they help to reduce programming errors 

Null pointers: use NULL or 0. It is a good idea to always initialize 
pointers to NULL. 



5.1 Pointers and address 

Address 

0x3dc 

0x3d8 

Program Memory 

0x3cc 

0x3c8 

0x3c4 

0x3c0 

Step 1: 

int main (int argc, argv) { 

 int  x = 4; 

 int * y = &x; 

 ... 

0x3bc 

0x3b8 

0x3b4 

0x3b0 

0x3d4 

0x3d0 

4 

0x3dc 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

NA 

x 
y 



5.1 Pointers and address 

More example operations on pointers 

 int x = 1, y = 2;  

 int *ip;  

 ip = &x;  /* ip points to x */ 

 y = *ip; /* y = 1;  */  

     *ip = *ip + 10; /* equivalent to x = x + 10; */  

     y= *ip +1; /* note the difference with *ip += 1 */  

     ++ *ip; /* similar to *ip += 1  and (*ip) ++ */   

 

(See more details in hands-on experiment 5.1) 

  



5.2 Pointers and function arguments 

Arguments are passed to functions by value. 

 
/* function to swap the values of two variable */ 

  

int a = 1, b = 2;  

swap(a, b);  

 

void swap (int x, int y) { 

  int temp; 

  temp = x; 

  x = y; 

  y = temp; 

} 

WRONG!!! 

int a = 1, b = 2;  

swap(&a, &b);  

 

void swap (int *x, int *y) { 

  int temp; 

  temp = *x; 

  *x = *y; 

  *y = temp; 

} 

More details see hands-on experiments 5.2  



5.3 Arrays and Pointers 

A variable declared as an array represents a contiguous 

region of memory in which the array elements are stored. 

int x[5]; // an array of 5 4-byte ints. 

All arrays begin with an index of 0 

 

 

An array identifier is equivalent to a pointer that references 

the first element of the array 

• int x[5], *ptr; 

ptr = &x[0] is equivalent to ptr = x; 

Pointer arithmetic and arrays:  

• int x[5]; 

x[2] is the same as *(x + 2), the compiler will assume you 

mean 2 objects beyond element x. 

0 

1 

2 

3 

4 

1 0 2 3 

little endian byte ordering 

memory layout for array x 



5.3 Arrays and pointers (continued I) 

Address 

0x3dc 

0x3d8 

Program Memory 

0x3cc 

0x3c8 

0x3c4 

0x3c0 

Note: The compiler converts z[1] or *(z+1) to 

Value at address (Address of z  + sizeof(int)); 

 

In C you would write the byte address as: 
  (char *)z + sizeof(int); 

 

or letting the compiler do the work for you 
  (int *)z + 1; 

Step 1: 

int main (int argc, argv) { 

 int  x = 4; 

 int *y = &x; 

 int *z[4] = {NULL, NULL, NULL, NULL}; 

 int  a[4] = {1, 2, 3, 4}; 

... 

0x3bc 

0x3b8 

0x3b4 

0x3b0 

0x3d4 

0x3d0 

z[3] 

z[2] 

z[1] 

z[0] 

a[3] 

a[2] 

a[1] 

a[0] 

4 

0x3dc 

0 

0 

0 

0 

4 

3 

2 

1 

NA 

NA 

x 

y 



5.3 Arrays and pointers (Continued II) 

4 

0x3dc 

Address 

0x3dc 

0x3d8 

Program Memory 

0x3bc 

0x3b8 

0x3b4 

0x3b0 

0x3cc 

0x3c8 

0x3c4 

0x3c0 

Step 1: 

int main (int argc, argv) { 

 int  x = 4; 

 int *y = &x; 

 int *z[4] = {NULL, NULL, NULL, NULL}; 

 int  a[4] = {1, 2, 3, 4}; 

Step 2: Assign addresses to array Z 

 z[0] = a;  // same as &a[0]; 

 z[1] = a + 1;  // same as &a[1]; 

 z[2] = a + 2; // same as &a[2]; 

 z[3] = a + 3; // same as &a[3]; 

 

 0x3bc 

0x3b8 

0x3b4 

0x3b0 

4 

3 

2 

1 

NA 0x3d4 

0x3d0 

z[3] 

z[2] 

z[1] 

z[0] 

a[3] 

a[2] 

a[1] 

a[0] 

NA 

x 

y 



5.3 Arrays and pointers (Continued III) 

4 

0x3dc 

Address 

0x3dc 

0x3d8 

Program Memory 

0x3bc 

0x3b8 

0x3b4 

0x3b0 

0x3cc 

0x3c8 

0x3c4 

0x3c0 

Step 1: 

int main (int argc, argv) { 

 int x = 4; 

 int *y = &x; 

 int *z[4] = {NULL, NULL, NULL, NULL}; 

 int a[4] = {1, 2, 3, 4}; 

Step 2: 

 z[0] = a; 

 z[1] = a + 1; 

 z[2] = a + 2; 

 z[3] = a + 3; 

Step 3: No change in z’s values 

 z[0] = (int *)((char *)a); 

 z[1] = (int *)((char *)a  

  + sizeof(int)); 

 z[2] = (int *)((char *)a 

  + 2 * sizeof(int)); 

 z[3] = (int *)((char *)a 

  + 3 * sizeof(int)); 
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0x3b8 

0x3b4 

0x3b0 

4 
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2 

1 

NA 0x3d4 

0x3d0 

z[3] 

z[2] 

z[1] 

z[0] 

a[3] 

a[2] 

a[1] 

a[0] 

NA 

x 

y 



5.4 Address arithmetic 

Pointers can do arithmetic operation 

• +, - , ++ 

• ==, !=, <, >, >=, etc 

Example: let p, and q be two pointers to an array 

• p++ 

• p+= 1 

• p < q 

• p + n      /* next n object p points to */ 

 

See hands-on experiments for more details 



5.5 Character pointers and functions 

String constant: an array of characters, ending 

with ‘\0’ 

char *pmessage = “now is the time”;  

/* The pointer to the character array is assigned to 

pmessage. */  

char amessage[ ] = “now is the time; /* an array */ 

pmessage:  now is the time\0 

amessage:  now is the time\0 



5.5 Character pointers and functions 

Assignment: is not a string copy operation 

 char *s = “this is a string”, *t;  

 t = s ;  /* this is not a string copy */ 

   /* this copies to t the address that s points to */  

 

To copy a string, we need a loop 

/* strcpy: copy t to s */  

void strcpy(char *s, char *t) { 

      while (( *s++ = *t++) != ‘\0’) ;  

} 

 

 



5.6 Pointer arrays; pointers to pointers  

Pointers are variables 

• can be stored in arrays 

Example: student name list: a 2 dimension array, 

which can be a pointer array;  

Pi Yun\0 

Liu Liang\0 

Yan Yu\0 

Pointer array char* name 

Huang piao\0 

Wang hai\0 

Cai zhi\0 

Sort 

More details in hands-on experiments 5.6 



5.7 Multi-dimensional arrays 

Array of pointers 

• flexible 

Multi-dimensional arrays 

• Rectanglar, therefore inflexible 

 



5.9 Pointers vs. multi-dimensional arrays 

Definition:  

  int a[10][20];  

  int *b[10];  

The following two expression are both legal.   

 a[3][4];  

 b[3][4];  

 

The size of a is 10*20 = 200 

The size of b is flexible. 



5.10 Command-line arguments 

main function has two arguments 

• Argc: argument count 

• Argv: argument vector 

Example 

 /* echo comman-line arguments */ 

 

main(int argc, char *argv[ ]) { 

  int i; 

  for (i = 1; i < argc; i ++ ) 

    printf("%s%s", argv[i], (i < argc -1) ? " ": ""); 

  printf("\n"); 

  return 0; 

} 


