
Course organization

• Course introduction (Week 1)

• Code editor: Emacs

• Part I: Introduction to C programming language (Week 1 - 12)

• Chapter 1: Overall Introduction (Week 1-4)

– C

– Unix/Linux

• Chapter 2: Types, operators and expressions (Week 4)

• Chapter 3: Control flow (Week 5, 6)

• Chapter 4: Functions and program structure (Week 6- 7)

• Chapter 5: Pointers and arrays (Week 8-9)

• Chapter 6: Structures (Week 10)

• Chapter 7: Input and Output (Week 11)

• Part II: Skills others than programming languages (Week 12- 14)

• Debugging tools（Week 12-13）

• Keeping projects documented and manageable （Week 14）

• Source code managing （Week 14）

• Part III: Reports from the battle field (student forum) (Week 15 – 16) 1

Chapter 5. Points and Arrays

Chaochun Wei

Shanghai Jiao Tong University

Spring 2014

Contents

5.1 Pointers and addresses

5.2 Pointers and function arguments

5.3 Pointers and arrays

5.4 Address arithmetic

5.5 Character pointers and functions

5.6 Pointer arrays, pointers to pointers

5.7 Multi-dimensional arrays

5.8 Initialization of pointer arrays

5.9 Pointers vs. multi-dimensional arrays

5.10 Command-line arguments

5.11 Pointers to functions

5.12 Complicated declarations

5.1 Pointers and address

For any type T, you may form a pointer type to T.

• Pointers may reference a function or an object.

• The value of a pointer is the address of the corresponding object or function

• Examples: int *i; char *x; int (*myfunc)();

Pointer operators: * dereferences a pointer, & creates a pointer
(reference to)
• int i = 3; int *j = &i;

*j = 4; printf(“i = %d\n”, i); // prints i = 4

• int myfunc (int arg);

int (*fptr)(int) = myfunc;

i = fptr(4); // same as calling myfunc(4);

Generic pointers:

• Traditional C used (char *)

• Standard C uses (void *) – these can not be dereferenced or used in pointer
arithmetic. So they help to reduce programming errors

Null pointers: use NULL or 0. It is a good idea to always initialize
pointers to NULL.

5.1 Pointers and address

Address

0x3dc

0x3d8

Program Memory

0x3cc

0x3c8

0x3c4

0x3c0

Step 1:

int main (int argc, argv) {

 int x = 4;

 int * y = &x;

 ...

0x3bc

0x3b8

0x3b4

0x3b0

0x3d4

0x3d0

4

0x3dc

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

x
y

5.1 Pointers and address

More example operations on pointers

 int x = 1, y = 2;

 int *ip;

 ip = &x; /* ip points to x */

 y = *ip; /* y = 1; */

 *ip = *ip + 10; /* equivalent to x = x + 10; */

 y= *ip +1; /* note the difference with *ip += 1 */

 ++ *ip; /* similar to *ip += 1 and (*ip) ++ */

(See more details in hands-on experiment 5.1)

5.2 Pointers and function arguments

Arguments are passed to functions by value.

/* function to swap the values of two variable */

int a = 1, b = 2;

swap(a, b);

void swap (int x, int y) {

 int temp;

 temp = x;

 x = y;

 y = temp;

}

WRONG!!!

int a = 1, b = 2;

swap(&a, &b);

void swap (int *x, int *y) {

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

More details see hands-on experiments 5.2

5.3 Arrays and Pointers

A variable declared as an array represents a contiguous

region of memory in which the array elements are stored.

int x[5]; // an array of 5 4-byte ints.

All arrays begin with an index of 0

An array identifier is equivalent to a pointer that references

the first element of the array

• int x[5], *ptr;

ptr = &x[0] is equivalent to ptr = x;

Pointer arithmetic and arrays:

• int x[5];

x[2] is the same as *(x + 2), the compiler will assume you

mean 2 objects beyond element x.

0

1

2

3

4

1 0 2 3

little endian byte ordering

memory layout for array x

5.3 Arrays and pointers (continued I)

Address

0x3dc

0x3d8

Program Memory

0x3cc

0x3c8

0x3c4

0x3c0

Note: The compiler converts z[1] or *(z+1) to

Value at address (Address of z + sizeof(int));

In C you would write the byte address as:
 (char *)z + sizeof(int);

or letting the compiler do the work for you
 (int *)z + 1;

Step 1:

int main (int argc, argv) {

 int x = 4;

 int *y = &x;

 int *z[4] = {NULL, NULL, NULL, NULL};

 int a[4] = {1, 2, 3, 4};

...

0x3bc

0x3b8

0x3b4

0x3b0

0x3d4

0x3d0

z[3]

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

4

0x3dc

0

0

0

0

4

3

2

1

NA

NA

x

y

5.3 Arrays and pointers (Continued II)

4

0x3dc

Address

0x3dc

0x3d8

Program Memory

0x3bc

0x3b8

0x3b4

0x3b0

0x3cc

0x3c8

0x3c4

0x3c0

Step 1:

int main (int argc, argv) {

 int x = 4;

 int *y = &x;

 int *z[4] = {NULL, NULL, NULL, NULL};

 int a[4] = {1, 2, 3, 4};

Step 2: Assign addresses to array Z

 z[0] = a; // same as &a[0];

 z[1] = a + 1; // same as &a[1];

 z[2] = a + 2; // same as &a[2];

 z[3] = a + 3; // same as &a[3];

 0x3bc

0x3b8

0x3b4

0x3b0

4

3

2

1

NA 0x3d4

0x3d0

z[3]

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

NA

x

y

5.3 Arrays and pointers (Continued III)

4

0x3dc

Address

0x3dc

0x3d8

Program Memory

0x3bc

0x3b8

0x3b4

0x3b0

0x3cc

0x3c8

0x3c4

0x3c0

Step 1:

int main (int argc, argv) {

 int x = 4;

 int *y = &x;

 int *z[4] = {NULL, NULL, NULL, NULL};

 int a[4] = {1, 2, 3, 4};

Step 2:

 z[0] = a;

 z[1] = a + 1;

 z[2] = a + 2;

 z[3] = a + 3;

Step 3: No change in z’s values

 z[0] = (int *)((char *)a);

 z[1] = (int *)((char *)a

 + sizeof(int));

 z[2] = (int *)((char *)a

 + 2 * sizeof(int));

 z[3] = (int *)((char *)a

 + 3 * sizeof(int));

0x3bc

0x3b8

0x3b4

0x3b0

4

3

2

1

NA 0x3d4

0x3d0

z[3]

z[2]

z[1]

z[0]

a[3]

a[2]

a[1]

a[0]

NA

x

y

5.4 Address arithmetic

Pointers can do arithmetic operation

• +, - , ++

• ==, !=, <, >, >=, etc

Example: let p, and q be two pointers to an array

• p++

• p+= 1

• p < q

• p + n /* next n object p points to */

See hands-on experiments for more details

5.5 Character pointers and functions

String constant: an array of characters, ending

with ‘\0’

char *pmessage = “now is the time”;

/* The pointer to the character array is assigned to

pmessage. */

char amessage[] = “now is the time; /* an array */

pmessage: now is the time\0

amessage: now is the time\0

5.5 Character pointers and functions

Assignment: is not a string copy operation

 char *s = “this is a string”, *t;

 t = s ; /* this is not a string copy */

 /* this copies to t the address that s points to */

To copy a string, we need a loop

/* strcpy: copy t to s */

void strcpy(char *s, char *t) {

 while ((*s++ = *t++) != ‘\0’) ;

}

5.6 Pointer arrays; pointers to pointers

Pointers are variables

• can be stored in arrays

Example: student name list: a 2 dimension array,

which can be a pointer array;

Pi Yun\0

Liu Liang\0

Yan Yu\0

Pointer array char* name

Huang piao\0

Wang hai\0

Cai zhi\0

Sort

More details in hands-on experiments 5.6

5.7 Multi-dimensional arrays

Array of pointers

• flexible

Multi-dimensional arrays

• Rectanglar, therefore inflexible

5.9 Pointers vs. multi-dimensional arrays

Definition:

 int a[10][20];

 int *b[10];

The following two expression are both legal.

 a[3][4];

 b[3][4];

The size of a is 10*20 = 200

The size of b is flexible.

5.10 Command-line arguments

main function has two arguments

• Argc: argument count

• Argv: argument vector

Example

 /* echo comman-line arguments */

main(int argc, char *argv[]) {

 int i;

 for (i = 1; i < argc; i ++)

 printf("%s%s", argv[i], (i < argc -1) ? " ": "");

 printf("\n");

 return 0;

}

