
R Basic

http://cbb.sjtu.edu.cn/~jingli/courses/2017fall/bi372/

Dept of Bioinformatics & Biostatistics, SJTU

http://cbb.sjtu.edu.cn/~jingli/courses/bi372/

Background

• Statistical software

– SAS,
– SPSS, Stata, Minitab
– Excel
– R

• Why should you use R?

– Not only R is free, but it’s also open-source

– It runs on a variety of platforms including Windows, Unix
and MacOS

– R allows you to integrate with other languages (C/C++,
Java, Python)

– Bioconductor (for omics data)

History of R

• S programming language (Scheme, Steele and Sussman, MIT

Lab,1970)

• Use S to develop statistical and graphical tools (Chambers

and Allan, AT&T, 1980)

• S-PLUS is a commercial implementation of the S (Statistical

Sciences, Inc., 1988)

• R is an implementation of S (Ross Ihaka and Robert

Gentleman,1995)

• The Comprehensive R Archive Network, CRAN (1977)

R software

• Home page: http://www.r-project.org

• BioConductor: http://www.bioconductor.org

• For Linux/OS X/Windows

2017/9/19 4

http://www.r-project.org/
http://www.bioconductor.org/

Install R

Installation for Windows

1. go the the R website (http://www.R-project.org)

2. click on Download R on the left and choose a mirror site

geographically near to you

3. choose Download R for Windows and click on base

4. click on Download R 2.15.x for Windows and save it (an .exe

file) on your computer

5. double-click on this to run the installation

R GUI

R Environment

• Code Editor for R

basic code editors provided by R

Tinn-R (http://www.sciviews.org/Tinn-R/)

RStudio (http://rstudio.org/)

http://www.sciviews.org/Tinn-R/

8

R Introduction

You can enter commands one at a time at the command
prompt (>) or run a set of commands from a source file.
There is a wide variety of data types, including vectors
(numerical, character, logical), matrices, dataframes, and
lists.

To quit R, use
>q()

9

R Introduction

A key skill to using R effectively is learning how to use
the built-in help system. Other sections describe the
working environment, inputting programs and
outputting results, installing new functionality through
packages and etc.

A fundamental design feature of R is that the output
from most functions can be used as input to other
functions. This is described in reusing results.

10

R Introduction

• These objects can then be used in other calculations.
To print the object just enter the name of the object.
There are some restrictions when giving an object a
name:

– Object names cannot contain `strange' symbols like !, +, -,
#.

– A dot (.) and an underscore () are allowed, also a name
starting with a dot.

– Object names can contain a number but cannot start with a
number.

– R is case sensitive, X and x are two different objects, as
well as temp and temP.

11

An example

> x <- c(1:10)
> x[(x>8) | (x<5)]
> # yields 1 2 3 4 9 10
> # How it works
> x <- c(1:10)
> X
>1 2 3 4 5 6 7 8 9 10
> x > 8
> F F F F F F F F T T
> x < 5
> T T T T F F F F F F
> x > 8 | x < 5
> T T T T F F F F T T
> x[c(T,T,T,T,F,F,F,F,T,T)]
> 1 2 3 4 9 10

12

R Introduction

> x = sin(9)/75
> y = log(x) + x^2
> x
[1] 0.005494913
> y
[1] -5.203902
> m <- matrix(c(1,2,4,1), ncol=2)
> m
> [,1] [,2]
[1,] 1 4
[2,] 2 1

13

R Workspace

Objects that you create during an R session are hold in

memory, the collection of objects that you currently have is

called the workspace. This workspace is not saved on disk

unless you tell R to do so.

This means that your objects are lost when you close R and

not save the objects, or worse when R or your system

crashes on you during a session.

14

R Workspace

When you close the RGui or the R console window, the

system will ask if you want to save the workspace

image. If you select to save the workspace image then

all the objects in your current R session are saved in a

file .RData.

This is a binary file located in the working directory of R,

which is by default the installation directory of R.

15

R Workspace

getwd() # print the current working directory

ls() # list the objects in the current workspace

setwd(mydirectory) # change to mydirectory

setwd("c:/docs/mydir")

16

R Help

Once R is installed, there is a comprehensive built-in
help system. At the program's command prompt
you can use any of the following:

help.start() # general help
help(foo) # help about function foo
?foo # same thing
apropos("foo") # list all function containing string
foo
example(foo) # show an example of function foo

17

R Datasets

R comes with a number of sample datasets that you
can experiment with. Type

> data()

to see the available datasets. The results will
depend on which packages you have loaded. Type

>help(datasetname)

for details on a sample dataset.

http://www.statmethods.net/interface/packages.html

R Packages

• R packages are collections of R functions, data, and compiled

code in a well-defined format. The directory where packages

are stored is called the library.

>library() # to see which packages are installed

• When you start R not all of the downloaded packages are

attached, only seven packages are attached to the system by

default. You can use the function search to see a list of

packages that are currently attached to the system.

> search() # to see which packages are currently loaded

19

R Packages

• To attach another package to the system you can use the
menu or the library function.

Via the menu: select the `Packages' menu and select `Load
package...', a list of available packages on your system will be
displayed. Select one and click `OK', the package is now
attached to your current R session.

Via the library function:

>library(MASS)
>help(package="MASS”)
> shoes
$A
[1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3
$B
[1] 14.0 8.8 11.2 14.2 11.8 6.4 9.8 11.3 9.3 13.6

> .libPaths() # to get the library location

> install.packages() # to install package

> update.packages() # to update package

For example, we want to install a new package vioplot

1. install.packages()

2. select a CRAN Mirror

3. library()

R Packages

Applied Statistical Computing and
Graphics

21

Source Codes

you can have input come from a script file (a file containing R
commands) and direct output to a variety of destinations.

The source() function runs a script in the current session. If
the filename does not include a path, the file is taken from
the current working directory.

input a script
source("myfile")

22

Data input &output

• Importing Data

• Keyboard Input

• Database Input

• Exporting Data

• Viewing Data

• Data Type

23

From A Comma Delimited Text File

first row contains variable names, comma is
separator

assign the variable id to row names

note the / instead of \ on mswindows systems

mydata <- read.table("c:/mydata.csv",
header=TRUE, sep=",", row.names="id")

x<-scan() get data from pasteborad

24

From Excel

The best way to read an Excel file is to export it to a
comma delimited file and import it using the
method above.

On windows systems you can use the RODBC
package to access Excel files. The first row should
contain variable/column names.

first row contains variable names

we will read in workSheet mysheet
>library(RODBC)
>channel <- odbcConnectExcel("c:/myexel.xls")
>mydata <- sqlFetch(channel, "mysheet")
>odbcClose(channel)

25

Keyboard Input

You can also use R's built in spreadsheet to enter
the data interactively, as in the following
example.

enter data using editor
>mydata <- data.frame(age=numeric(0),
gender=character(0), weight=numeric(0))
>mydata <- edit(mydata)

26

Output

The sink() function defines the direction of the
output.

direct output to a file
sink("myfile", append=FALSE, split=FALSE)

return output to the terminal
>sink()

27

Output

The append option controls whether output overwrites or
adds to a file.

The split option determines if output is also sent to the screen
as well as the output file.

Here are some examples of the sink() function.

output overwrites existing file. no output to terminal.
>sink("myfile.txt", append=TRUE, split=TRUE)

28

Exporting Data

To A Tab Delimited Text File

>write.table(mydata, "c:/mydata.txt", sep="\t")

To an Excel Spreadsheet

>library(xlsReadWrite)
>write.xls(mydata, "c:/mydata.xls")

29

Viewing Data

There are a number of functions for listing the
contents of an object or dataset.

list objects in the working environment
ls()

list the variables in mydata
names(mydata)

list the structure of mydata
str(mydata)

list levels of factor v1 in mydata
levels(mydata$v1)

dimensions of an object
dim(object)

Object in R

• List the objects in current session:

> ls() # or objects()

> rm(x)

> rm(list=ls())

> q() # or quit() to exit

Save the current images? yes? no? cancel?

> save(x, file=“x.RData”)

> load(file=“x.RData”)

2017/9/19 30

• Type of object
• Vector, Matrix

• Factor

• List

• Dataframe

• Class of an object
• Numeric

• String/Character

• Logical

• Function

Object in R

2017/9/19 32

Vectorized Arithmetic

– We can do little statistics with a single number!

– we need a way to store a sequence/list of numbers

– One can simply concatenate elements with c function

> weight <- c(60,72,75,90,95,72)
> weight
[1] 60 72 75 90 95 72
> weight[1]
[1] 60
> height <- c(175, 180,163,156,171,149)
> bmi <- weight/height^2

2017/9/19 33

Vectors

We have 3 types of vectors: numeric, logical, character

Numeric vectors
> numVec <- c(1,5,8)
> x
[1] 1 5 8
#logical vectors
> logVec <- c(TRUE, TRUE, FALSE, TRUE)
> logVec
[1] TRUE TRUE FALSE TRUE
Character vectors
> charVec <- c(“Hello”, “my”,”name”,”is”,”Ricky”)
> charVec
[1] “Hello” “my” “name” “is” “Ricky”

2017/9/19 34

Missing and Special values

– In R, missing data are denoted by NA

– NaN – Not a number

– -Inf, Inf

– R has provided different ways to deal with missing data, like
omitting, imputing, etc.

> weight <- c(60,72,75,90,NA,72)
> mean(weight)
[1] NA
> mean(weight, na.rm=TRUE)
[1] 73.8

2017/9/19 35

Matrices and arrays

– A matrix is a 2-D
array of numbers

– Matrices can be used
to perform statistical
operations (linear
algebra).

– Matrices can be used
to store tables

> X <- 1:12
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> length(X)
[1] 12
> dim(X)
[1] NULL
> dim(X) <- c(3,4)
> X

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> X <- matrix(1:12, nrow=3, byrow=FALSE)
> rownames(X) <- c(“A”, “B”, “C”)
> X

[,1] [,2] [,3] [,4]
A 1 4 7 10
B 2 5 8 11
C 3 6 9 12
> colnames(X) <- c(‘1’,’2’,’x’,’y’)
> X

2017/9/19 36

Matrices and Arrays

– Matrices can also be formed by “glueing” rows or
columns using rbind or cbind functions.

> x1 <- 1:4; x2 <- 5:8
> y1 <- c(3,9)
> myMatrix <- rbind(x1, x2)
> myMatrix

[,1] [,2] [,3] [,4]
x1 1 2 3 4
x2 5 6 7 8
> myNewMatrix <- cbind(myMatrix, y1)
> myNewMatrix

y1
x1 1 2 3 4 3
x2 5 6 7 8 9

2017/9/19 37

Factors

– It is common to have categorical data in statistical
data analysis (e.g. Male/Female).

– In R such variables are referred to as factors

– A factor has a set of levels

> pain <- c(0,3,3,2,2,1)
> fpain <- as.factor(c(0,3,2,2,1))
> levels(fpain) <- c(“none”, “mild”, “medium”, “severe”)
> is.factor(fpain)
[1] TRUE
> is.vector(fpain)
[1] FALSE

2017/9/19 38

Lists

– Lists can be used to
combine objects of
possibly different
kinds/sizes into a large
composite object

– The components of the
list are named according
to the arguments used

– Named components can
be accessed with the $
sign

> x <- c(31,32,40)
> y <- as.factor(c(“F”, “M”, “M”)
> z <- c(“London”, “New York”,
“Shanghai”)
> Persons <- list(age=x, gender=y, loc=z)
> Persons
$age
[1] 31 32 40

$gender
[1] F M M

$loc
[1] “London” “New York” “Shanghai”

> Persons$age
[1] 31 32 40

2017/9/19 39

Data.frame

– DFs are a list of vectors and/or factors of the same length that
are related “across”

– Each row comes from a unique object (e.g., a person,
experiment, etc.)

– Each column is of the same data type

– More storage-efficient and indexing-efficient than simple lists

> MyDataFrame <- data.frame(age=c(31,32,40), sex=y)
> MyDataFrame
> MyDataFrame$age
[1] 31 32 40
> is.vector(MyDataFrame$age)
[1] TRUE
> is.vector(MyDataFrame$sex)
[1] FALSE

2017/9/19 40

Names

– Names of an R object can be accessed and/or modified with
‘names’ function (method)

– Names can be used for indexing

– So remember to give explicit names to variables

> x <- 1:3
> names(x)
NULL
> names(x) <- c(‘a’, ‘b’, ‘c’)
> persons <- data.frame(age=c(31,32,34), sex=y)
> names(persons)
[1] “age” “sex”
> names(persons) <- c(“age”, “gender”)
> names(persons)[1] <- “Age”

2017/9/19 41

Indexing

– Indexing is a great way to directly access elements of interest,
for vector, list, matrix, array, and data.frame

Indexing a vector
pain <- c(0,3,2,2,1)
pain[1]
pain[1:2]
pain[c(1,3)]
pain[-5]

\# Indexing a matrix
MyMatrix[1,2]
MyMatrix[1,]
MyMatrix[,1]
MyMatrix[,-2]

Indexing a list
MyList[3]
MyList[[3]]
MyList[[3]][1]

Indexing a
data.frame
MyDataFrame[1,]
MyDataFrame[2,]

2017/9/19 42

Functions and arguments

– Many of the R tasks are done using function calls, like log(x),
plot(weight, height)

– If you do want to get help for a function e.g. plot(), just
type ?plot

– Most function arguments have sensible default and can thus be
omitted, e.g., plot(weight, height, col=1)

– If you do NOT specify the names of the argument, the order is
very important

2017/9/19 43

R programming

– R is a true programming language.

if statement
x <- -2
if (x >0) {

print(x)
}
else if (x==0) {

print(0)
}
else {

print(-x)
}

for-loops
n <- 1e6
x <- rnorm(n,10,1)
y <- x^2
y <- rep(0,n)
for (i in 1:n) {

y[i] <- sqrt(x[i])
}
while-loops
count <- 1
while (count<=n) {

y[count] <- sqrt(x[count])
count <- count + 1

}

2017/9/19 44

Creating your own functions

– As with other programming languages, you can create
your own functions

testFunc <- function(yourName, myName=“Yahoo”, number=0)
{

if (number == 0) {
return(yourName)
} else {
return(myName)
}

}
testFunc(“Google”);
testFunc(“Baidu”, “Facebook”, 1)
testFunc(number=1, myName=“Twitter”,
yourName=“Microsoft”)

45

Useful Functions

length(object) # number of elements or components

str(object) # structure of an object

class(object) # class or type of an object

names(object) # names

c(object,object,...) # combine objects into a vector

cbind(object, object, ...) # combine objects as columns

rbind(object, object, ...) # combine objects as rows

ls() # list current objects

rm(object) # delete an object

newobject <- edit(object) # edit copy and save a

newobject

fix(object) # edit in place

Exercise (1)

46

1. Collect the heights (in cm) and the shoes lengths (in cm)

of your classmate (10 students). Save data as .txt file.

2. Using R, load the data. Add the information of one more

student to the data frame.

3. Create a vector called ratio (height/shoes length) and

add to the data frame.

4. Save the data frame as new.csv

Exercise (2)

47

ndata<- rnorm(10000, mean=200, sd=10)
Generate numbers from a normal distribution

1. Randomly sample 10 numbers from ndata, and calculate the mean. Repeat 10

times

sample(); mean()

2. Randomly sample 100 numbers from ndata, and calculate the mean. Repeat 10

times

3. Randomly sample 1000 numbers from ndata, and calculate the mean. Repeat 10

times

4. Perform the same analyses to another dataset :

kdata<-rnorm(10000, mean=200, sd=50)

5. Save ndata and kdata as .txt files.

