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Group Discussion(10 min)

®* If we are going to have a cancer proteome project in
large scale population, which experiment design will
you recommend between paired and unpaired t-test !

Share your points.
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Review lectureb

® t-test
— Paired t-test - —
n -> the number of pairs, df=n-1 d O \/ - (di B d)
5, =/ =
-1
s, /</n )
— Independent samples
* Equal variance  _ (Xl—xz)—(ﬂl—ﬂz) , (nl _1)512 +(n2 _1)322
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s, /1+1 P n,+n,—2
nl n2
* Unequal variance
t:(xl_XZ)_(lul_IUZ) [( 2/n) (22/n2)]2
5,5 [( st/n.J (s:/nz)j
n n, (n-1)  (n,-1)
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Health Benefits of drinking tea

Drinker vs. Non-drinker
(heart, skin, allergies, ... )

=) Two Groups




2017 Fall

How much we should take

O cup, | ~4 cups, and more » Several Groups
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Example: anti-cancer drugs

Efﬁ!lndscape of Pharmacogenomic Interactions in ¢ ANOVA Anal)’SiS Deﬁnes a Landscape Of
Pharmacogenomic Interactions

Cancer

1,001 human cancer cell lines

s ﬂM@ﬂ" " e et For pan-cancer ANOVA, the set of CFEs
included 267 CGs, 407 RACSs, and three gene
fusions (BCR-ABL, EWSRI-FLII, and EWSRI-X).
Overall, for the 265 compounds, we identified
| 688 statistically significant interactions between
o L unique CFE-drug pairs (p value < 1073 at a false

77N\

i h
patients
Filter by
clinical Ampllﬂcatlons
prevalence and deletlons

Clinically relevant genomic fealures for sensitivity modeling

Promoter
Hypermethylations

. A Z; ke discovery rate [FDR] < .25).
Y Wt y rate [FOR] < 25)
Analysis of Therapeutic markers # Drug response modelling EffeCt -
patients/cell-lines PTEN mutant o Sewm“y . . .
St ”T’ § *T@ ’1 et~ sowt [ Different cancer cellline (CFE-drug pair)
Cell, 166, 740-754, 2016 CFEs: Cancer functional events

CGs: cancer genes
RACSs: focal recurrently aberrant copy number segments
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One-way ANOVA

Comparing more than two groups...

You have a group of individuals randomly split into smaller
groups and completing different tasks.

For example, you might be studying the effects of tea on

weight loss and form three groups: much tea, some tea and
no tea.
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ANOVA (ANalysis Of VAriance)

® Idea: For two or more groups, test difference
between means, for quantitative normally
distributed variables.

® Just an extension of the t-test.
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One-Way Analysis of Variance (—JTt /3 &= 73 #71)

® Assumptions, same as t-test

— Normally distributed outcome
— Equal variances between the groups

— Groups are independent
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Hypotheses of One-Way ANOVA

Hy:m=m,=m,

H, : Notallof thepopulatiommeansarethesame



Example 2- gestational age
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Example 2- gestational age

* A project at Shanghai and Women' s Hospital has been
investigating the differences of gestational age (Z24%)
between singleton, twin, triplet,and more than 3 babies
births, in order to limit poor outcomes from neonatal and

fetal complications (374 JLF & E).

® The first step in this analysis was to determine if there
was a difference in the gestational age at which babies of
these different types are delivered.
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Example 2

® The null hypothesis is that all of the groups have the same
gestational age on average

®* We would like to test this null hypothesis at the 0.05 level

® You could compare each of the groups to each of the other
groups which would be 6 pair wise comparisons at the 0.05
level, but what happens to the overall alpha level?

®* Remember a = P(reject H, | H, is true) so in this case o =
P(one difference | all are equal )
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Overall a level

* Now, if we completed each of the 6 pair wise tests at the 0.05
level and all of the tests were independent, we know that P(fail
to reject all 6 hypotheses | H, is true) = (1-0.05)¢ = 0.735

® Therefore, P(reject at least | | H, is true) = 1-0.735 = 0.265 = a
= type | error

® Notice that the type | error is now much worse than 0.05 and
you can imagine how this would get even worse as the
number of pair wise increases

® What can we do!?
— ANOVA
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The “F-test”

Is the difference in the means of the groups more
than background noise (=variability within groups)?

Summarizes the mean differences
between all groups at once.

/

E_ Variability between groups
Variability within groups

N

Analogous to pooled variance from a t-test.
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Picture |

* Now, back to our example.

e Let s assume for the rest of the
class that the normality.

* If all of the groups had the same
means, the distributions for all
of the populations would look
exactly the same (overlaid

graphs)
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Picture Il

* Now, if the means of the populations were
different, the picture would look like this. Notice
that the variability between the groups is much

greater than within a group
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Sources of variance

®* When we take samples from each population, there will
be two sources of variability

— Within group variability : when we sample from a group
there will be variability from person to person in the same
group

* We will always have this form of variability because it is sampling
variability

— Between group variability : the difference from group to
group
* This form of variability will only exist if the groups are different

* If the between group variability if large, the means of the two groups is
likely not the same
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We can use the two types of variability to determine if the
means are likely different

How can we do this?
Look again at the picture

Blue arrow: within group, red arrow: between group
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* Blue arrow: within group, red arrow: between group

* Notice that when the distribution are separate, the between
group variability is much greater than the within group




2017 Fall

F-statistic

® In the comparison of variance from the two sample
t-test, we compared the ratio of the two variances to

an F-distribution

®* ANOVA uses a similar method of comparison to an
F-distribution
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The F-distribution

® The F-distribution is a continuous probability distribution that
depends on two parameters d, and d, (humerator and
denominator degrees of freedom, respectively):

® A random variate of the F-distribution with parameters d, and
d, arises as the ratio of two appropriately scaled chi-squared

variates: F distribution
dfw=k-1,dfg=N-k

Uy /ds 13
U, /ds

Where X =

Prob(F)

*U, and U, have chi-squared distributions with d,
and d, degrees of freedom respectively

‘U, and U, are independent.



http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Chi-squared_distribution
http://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)
http://en.wikipedia.org/wiki/Statistical_independence
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The F-distribution

®* A ratio of variances follows an F-distribution:

2
Ohetween ~F

2 n,m
O within

® The F-test tests the hypothesis that two variances are equal.

oF will be close to | if sample variances are equal.
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Notation

®* First we will define

Xij = observation from student i from group |
1 U
X;=—2_%;  mean of group |
N; =
o2y
X = 3 grand mean over all of the groups

®* How could we express the different forms of
variability?
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Sources of variability

® The deviation of each observation from the grand mean can be
broken into two pieces

T 1

Within group variability Between group
variability

® Like the calculation of the variance, we are interested in the
square of the deviation

®* What does the squared deviation look like?
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* The equation of the squared deviation summed over

group
a0 e A )
aa(xl] — x) = a((xy - xj) + (xj - x))
j=1i=1 j=1i=1
AW o A _
= aa(xl] —x]) + aaZ(xU —x])(x] —x)
j=1i=1 j=1i=1
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* Now the second term in the final equation equals 0 (show on
your own if you are interested)

* The final squared deviation simplifies to

o o =2 o J — o O [— =
ad(x,-x) =ad(x,-x) +aalx, -
]:1 =1 ]:1 =1 ]:1 =1

| 1 |

x)

Total sum of squares Within group sum of Between group sum of
(SS;) squares (SSyy) squares (SSg)
B R AN R g

* As we discussed earlier, we are going to compare the two
errors to determine if the group means are equal
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The within group variability

® It can be written in terms of the individual group standard
deviations, s, which are often given summary statistics

S 8 2 S
:aa(xl.j—xj) :a(nj—l)si

j=1 i=1 j=1

® Remember that we are under the assumption that all of the 5. S
are equal, so we can pool the estimates of the s; s (just like the
pooled variance estimate of two sample t-test). The result is called
the within group mean square error, which is the overall estimate

of the within group variance

4

é(nj —1)55
MS,, = L=
é(”i _1)
j=1

®* Note the denominator is the total sample size minus the number
of groups
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The between group variability

® The between group variability can be broken into pieces from
the summary statistics as well

S -2 & —\ 2
o) — = o — =
SSB:aa(x.—x) = n.(x.—x)
J J\7J
j=1 i=1 j=1

® The between group mean square error can be written as

® The denominator of the MS; is the number of groups minus |
because we are considering the group means as the
observations and the grand mean as the mean
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F-statistic

®* Now that we have estimates of the between group and
within group variation, we can use our F-statistic

~MS, SS./(k-1)

F — —
areMs,  Ss,, /(n—k)

where k is the number of groups and n is the total
sample size

® This test statistic is compared to an F-statistic with k-|
and n-k degrees of freedom
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ANOVA Table

* To complete the analysis, we need to calculate the SS”s,MS’ s
and the F-statistic

* A specific display of this data is often used called the ANOVA
table

® Standard software may provide results in this form

Source of SS df MS F p-value
variation

Between SSg k-1 MSg MSg/MS,y

Within SSw n-k MSw

Total SS+
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Example * * *

* Let’s perform an ANOVA test for the test score

data

* Here are the summary statistics

size

Singleton | Twin Triplet > 3 babies
Mean 39.3 38.6 37.2 36.2
Standard |1.67 1.93 1.55 1.17
deviation
Sample 30 16 10 6
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Steps for the hypothesis test

|) State null and alternative hypotheses

2)
3)
4)
)
6)

Hym=m,= ....=m,

H,: at least one mean is different
Specify a level
Calculate test statistic: See ANOVA table
Calculate p-value: See ANOVA table

Reject null or not reject null

Conclusions: There is at least one difference we
reject null
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ANOVA table
e Here is the ANOVA table for this data
Source of SS df MS F p-value
variation
Between 94.629 |3 31.542 |11.08 <0.001
Within 165.038 |58 2.845
Total

* Conclusions:We conclude that at least one group is
significantly different from the others.
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Example 3: Vitamins~ height

Treatment 1
60 inch
67
42
67
56
62
64
59
72
71

Treatment 2
50
52
43
67
67
59
67
64
63
65

Treatment 3
48
49
50
55
56
61
61
60
59
64

Treatment 4
47
67
54
67
68
65
65
56
60
65
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Step |: calculate the sum
of squares between groups:

Mean for group | = 62.0
Mean for group 2 = 59.7
Mean for group 3 = 56.3
Mean for group 4 = 61.4

Grand mean= 59.85

SSB = [(62-59.85)2 + (59.7-59.85)2 + (56.3-59.85)2 + (61.4-59.85)2] x (n per group)=

19.65x10 = 196.5

Example 3

Treatment |

60 inches

67
42
67
56
62
64
59
72
71

Treatment 2

50
52
43
67
67
59
67
64
63
65

Treatment 3

48
49
50
55
56
6l
6l
60
59
64

Treatment 4

47
67
54
67
68
65
65
56
60
65
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Step 2: calculate the sum
of squares within groups:

(60-62) 2+(67-62) 2+ (42-
62) 2+ (67-62) 2+ (56-62) 2+
(62-62) 2+ (64-62) 2+ (59-
62) 2+ (72-62) 2+ (71-62) 2+
(50-59.7) 2+ (52-59.7) 2+
(43-59.7) 2+67-59.7) 2+ (67-
59.7) 2+ (69-59.7)
2,..+....(sum of 40 squared
deviations) =2060.6

Example 3

Treatment 1
60 inches
67
42
67
56
62
64
59
72
71

Treatment 2
50
52
43
67
67
59
67
64
63
65

Treatment 3
48
49
50
55
56
61
61
60
59
64

Treatment 4
47
67
54
67
68
65
65
56
60
65
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Step 3: Fill in the ANOVA table

Source of df. Sum of squares Mean Sum of  F-statistic = p-value
variation Squares
Between

3 196.5 65.5 .14 344

Within
36 2060.6 57.2 _ _
Total
39 2257.1

INTERPRETATION of ANOVA:

How much of the variance in height is explained by treatment group?
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Step 3: Fill in the ANOVA table

Source of df. Sum of squares Mean Sum of  F-statistic = p-value
variation Squares
Between
3 @ 65.5 .14 344
Within
36 2060.6 57.2

Total

INTERPRETATION of ANOVA:
How much of the variance in height is explained by treatment group?

R2=“Coefficient of Determination” = SSB/TSS = 196.5/2275.1=9%
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Coefficient of Determination

~ SSB SSB
SSB+SSE  SST

R2

The amount of variation in the outcome variable (dependent
variable) that is explained by the predictor (independent
variable).



ANOVA example
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Table Mean micronutri

S123,n=25
117.8

S28,n=25

Mean |58.7

Iron (mg) Mean 2.0 2.0
SD 0.6 0.6

Folate (ug) Mean 26.6 38.7
SD 13.1 14.5

Zinc (mg) Mean 1.9 1.5
SD 1.0 1.2

2 School | (most deprived; 40% subsidized lunches).
b School 2 (medium deprived; <10% subsidized).
¢ School 3 (least deprived; no subsidization, private school).

4 ANOVA; significant differences are highlighted in bold (P<0.05).

2.0
0.6

42.6

5.1
|.3
0.4

lunch by school

S3¢, n=25
206.5
86.2

P-value®
0.000

0.854

0.000

0.055

FROM: Gould R, Russell J,
Barker ME. School lunch menus
and || to 12 year old children's
food choice in three secondary
schools in England-are the
nutritional standards being met?
Appetite. 2006 Jan;46(1):86-92.
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Answer

Step |: calculate the sum of squares between groups:

Mean for School | = 117.8
Mean for School 2 = |58.7
Mean for School 3 = 206.5

Grand mean: 161

SSB =[(117.8-161)2 + (158.7-161)% + (206.5-161)2] x25 per group=
98,113
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Answer

Step 2: calculate the sum of squares within groups:

S.D.for S| =624
S.D.for S2 =70.5
S.D. for S3 =86.2

Therefore, sum of squares within is:
(24)[ 62.4% + 70.5 %+ 86.22]=391,066
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Answer

Step 3: Fill in your ANOVA table

Mean Sum of

Source of variation df. Sum of squares Squares  F-statistic p-value
Between 2 98,113 49.056 9 <.05
Within 72 391,066 5.431

Total 74 489,179

**R2=98113/489179=20%

School explains 20% of the variance in lunchtime
calcium intake in these kids.
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ANOVA summary

Analysis of variance Impact of within-group variance on power

k = 3, n = 6 sz: 6 2 1
A,B,C '_?:' sS ——t — ——i
ABC ocee B ~r P8 ~- ~ g
: SSyy ol o
A e —— P 7
® = '“—’; —
B — - — —al
= ” : O Q0O D O AoX
; @ — i ——i
¢ = g— ol
F=1,P=039 F=3,P=0.08 F=6, P=0.01
Fo k33t31 / S%}/( — MSg/MSyy Power=0.19  Power=050 Power =0.81



2017 Fall

®* Remember the assumption of equal variance across groups is
required

®* We were able to conclude that one of the means is different,
but we do not know which of the means is different. ANOVA
is often considered a first step because it gives evidence if
there are any differences and further testing is required to
determine which are the significant differences

®* We must do pair wise comparisons to determine which
specific means are different, but we must still take into
account the problem with multiple comparisons!?

* How could we do this?
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ANOVA (ANalysis Of VAriance)

®* ANOVA:just an extension of the t-test.

Q: can we do multiple t-test here ?

Why not just do 3 pairwise ttests?
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Question: Why not just do 3 pairwise ttests?

® Answer: because, at an error rate of 5% each test, this means
you have an overall chance of up to 1-(.95)3= 14% of making a
type-| error (if all 3 comparisons were independent)

* If you wanted to compare 6 groups, you' d have to do .C, =
|5 pairwise ttests; which would give you a high chance of
finding something significant just by chance (if all tests were
independent with a type-l error rate of 5% each); probability
of at least one type-l error = 1-(.95)!°=54%.
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Recall: Multiple comparisons

Familywise error probability by number of comparisons
1 T T T T T T T ]

line 1 —

Frobakility of error

5| | | | | | | | | |

5] 18 e 2A 4h =% =3 FH 28 268 188
Humber of comparisons
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Correction for multiple comparisons

How to correct for multiple comparisons post-hoc...

® Bonferroni correction (adjusts p by most conservative
amount; assuming all tests independent, divide p by the
number of tests)

° BH
® Fisher’s LSD
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Procedures for Post Hoc Comparisons

If your ANOVA test identifies a difference between group
means, then you must identify which of your k groups differ.

If you did not specify the comparisons of interest
(“contrasts”) ahead of time, then you have to pay a price for
making all pairwise comparisons to keep overall type-| error
rate to a.

Alternately, run a limited number of planned comparisons
(making only those comparisons that are most important to
your research question). (Limits the number of tests you
make).
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| . Bonferroni

For example, to make a Bonferroni correction, divide your desired alpha cut-
off level (usually .05) by the number of comparisons you are making. Assumes
complete independence between comparisons, which is way too conservative.

Obtained P-value Original Alpha # tests New Alpha Significant?
.001 .05 5 0.01 Yes
Ol .05 4 0l No
019 .05 3 0l No
.032 .05 2 0l No

.048 .05 I 0l No
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2. Benjamini-Hochberg (FDR)

® Put the individual P values in order, from smallest to
largest. The smallest P value has a rank of i=1, then
next smallest has i=2, etc. The adjusted P value (FDR)
for a test is the raw P value times m/i, whichever is
smaller (m is the number of tests and i is the rank of
each test). If the adjusted P value is smaller than the
false discovery rate you choose, the test is significant
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3.Fisher’s LSD

2

Sp in our 2-sample t-test formula with
and we get:

— We replace
MS

error?

X—l_XZ
1

\/Mserror( + 1j
nl r-]2

— We then test this using a critical t, using our t-table and
df,. .. as our df

error

t =

— You can use either a one-tailed or two-tailed test,
depending on whether or not you think one mean is
higher or lower (one-tailed) or possibly either (two-
tailed) than the other
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Discussion

® Can we do multiple t-tests for comparison of more
than two groups.

* Can we do ANOVA for comparison of two groups
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Practice problem

® Your patient is taking one of the standard drugs that was
shown to be statistically less effective in minimizing
motion sickness (i.e., significant p-value for the comparison
with the experimental drug). Assuming that none of these
drugs have side effects but that the experimental drug is
slightly more costly than your patient’ s current drug-of-
choice, what (if any) other information would you want to
know before you start recommending that patients switch
to the new drug!?



