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Recall- eat chocolate
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Covariance (协方差)
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Covariance is a measure of how much two random variables change 

together

2=Var(x) =E(x-)2 
Variance
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http://en.wikipedia.org/wiki/Random_variable
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Interpreting Covariance

cov(X,Y) > 0       X and Y are positively correlated

cov(X,Y) < 0       X and Y are inversely correlated

cov(X,Y) = 0       X and Y are independent
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Correlation coefficient

Pearson’s Correlation Coefficient is standardized 
covariance (unitless):

r =
covariance(x, y)

var x var y
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Correlation

• Measures the relative strength of the linear 
relationship between two variables

• Ranges between –1 and 1

• The closer to –1, the stronger the negative linear relationship

• The closer to 1, the stronger the positive linear relationship

• The closer to 0, the weaker any positive linear relationship
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Scatter Plots of Data with Various Correlation Coefficients
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Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall
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Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall
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Linear Correlation
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Slide from: Statistics for Managers Using Microsoft® Excel  4th Edition, 2004 Prentice-Hall
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Calculating by hand…
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Simpler calculation formula…
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Correlation Analysis…  “-1 <  < 1”

• If the correlation coefficient is close to +1 that means you 

have a strong positive relationship.

• If the correlation coefficient is close to -1 that means you 

have a strong negative relationship.

• If the correlation coefficient is close to 0 that means you have 

no correlation.

• WE HAVE THE ABILITY TO TEST THE HYPOTHESIS

• H0:  = 0
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Distribution of the correlation coefficient 

SE(r̂) =
1- r2

n - 2

The sample correlation coefficient follows a T-

distribution with n-2 degrees of freedom (since you 

have to estimate the standard error).

t = r /
1- r2

n - 2
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History- Galton's Sweet Pea Data

• In Natural Inheritance, Galton (1894) provided a table, which 

contained a list of frequencies of daughter seeds of various 

sizes organized in rows according to the size of their parent 

seeds

• In 1896, Pearson published his 

first rigorous treatment of 

correlation and regression 

• A simpler proof than 

Pearson's for the product-

moment method proposed by 

Ghiselli (1981)
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Simple Linear RegressionChocolate ~ Nobel laureates

Linear Regression 

Can we predict Novel Laureates per 10 million population using chocolate consumption?
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Linear Regression 

• Regression analysis is used to predict the value of one variable 
(the dependent variable, 因变量) on the basis of other 
variables (the independent variables，自变量).

• Dependent variable: denoted Y

• Independent variables: denoted X1, X2, …, Xk

• If we only have ONE independent variable, the model is

which is referred to as simple linear regression. We would be 
interested in estimating β0 and β1 from the data we collect. 
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Linear Regression

• Variables:

X = Independent Variable (we provide this)

Y = Dependent Variable (we observe this)

• Parameters:

β0 = Y-Intercept

β1 = Slope

ε ~ Normal Random Variable (με = 0, σε = ???) [Noise]
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The Intercept, β0
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The Slope, β1
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The Slope, β1
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Building the Model – Collect Data

• Test 2 Grade = β0 +β1*(Test 1 Grade)

• From Data:

Estimate β0 

Estimate β1

Estimate σε

Student Test 1 Test 2

1 50 32

2 51 33

3 52 34

4 53 35

5 54 36

6 55 37

7 56 39

8 57 40

9 58 41

10 59 42

11 60 43

12 61 44

13 62 46

14 63 47

15 64 48

16 65 49

17 66 50

18 67 51

19 68 53

20 69 54

21 70 55

22 71 56

23 72 57
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Linear Regression Analysis…

Plot of Fitted Model
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Which line has the best “fit” to the data?

?

?

?
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Estimating the Coefficients…

• In much the same way we base estimates of     on     , we 

estimate      with b0 and      with b1, the y-intercept and slope 

(respectively) of the least squares or regression line given by:

• (This is an application of the least squares method and it 

produces a straight line that minimizes the sum of the squared 

differences between the points and the line)
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Least Squares Line…

these differences are 
called residuals or errors
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Least Squares Line…
[sure glad we have computers now!]

• The coefficients b1 and b0 for 
the least squares line…

• …are calculated as:

  

SSE = (Y - ˆ Y )å
2

= (Y - b0 - b1X)2å
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Data

Statistics

Information

Data Points:

x y

1 6

2 1

3 9

4 5

5 17

6 12
y = .934 + 2.114x

Least Squares Line… See if you can estimate Y-intercept and slope from this 
data

Recall…
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Least Squares Line… See if you can estimate Y-intercept and slope 
from this data

X Y X - Xbar Y - Ybar (X-Xbar)*(Y-Ybar) (X - Xbar)
2

1 6 -2.500 -2.333 5.833 6.250

2 1 -1.500 -7.333 11.000 2.250

3 9 -0.500 0.667 -0.333 0.250

4 5 0.500 -3.333 -1.667 0.250

5 17 1.500 8.667 13.000 2.250

6 12 2.500 3.667 9.167 6.250

Sum = 21 50 0.000 0.000 37.000 17.500

Xbar = 3.500

Ybar = 8.333

sxy = 7.400 37.00/(6-1)

sx
2
 = 3.500 17.5/(6-1)

b1 = 2.114 7.4/3.5

b0 = 0.933 8.33 - 2.114*3.50
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Example: Arm Circumference and Height 
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Arm Circumference and Height 

T-test ANOVA
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Visualizing Arm Circumference and Height Relationship 
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Scatterplot with regression line 
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• Estimated mean arm circumference for children 60 cm in height 

Example:  Arm Circumference and Height 
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• Estimated mean arm circumference for children 60 cm in height 

Example:  Arm Circumference and Height 

Notice, most points don’t fall directly on the line: we are estimating 
the mean arm circumference of children 60 cm tall: observed points 
vary about the estimated mean 
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Linear regression assumes that… 

– The relationship between X and Y is linear

– Y is distributed normally at each value of X

– The variance of Y at every value of X is the same 

(homogeneity of variances)

– The observations are independent


