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Review Questions (5 min)

® Describe the assumption of simple linear
correction !

® Write down the teachers’ hames in the last two
classes.
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Pearson’s Correlation Coefficient

covariance(x,y) n—1

Vvar x,/vary Zn:(x. —X)? Zn:(Y- -y)

[ =
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Linear Regression

® Variables: y — /30 £ lx + &

X = Independent Variable (we provide this)
Y = Dependent Variable (we observe this)

® Parameters:
Bo = Y-Intercept
B, = Slope
€ ~ Normal Random Variable (u, = 0, 0, = 7??) [Noise]
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Which line has the best “fit” to the data?
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Least Squares Line...

[sure glad we have computers now!]

* The coefficients b, and b, for ~ z“‘*‘ ~ X 7)

the least squares line...

y=b,+bx

e _.are calculated as:
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Visualizing Arm Circumference and Height Relationship

Arm Circumference and Height
150 Nepali Children < 12 Months
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Scatterplot with regression line

Arm Circumference and Height
150 Nepali Children < 12 Months
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Example: Arm Circumference and Height

Estimated mean arm circumference for children 60 cm in height

Arm Circumference and Height
150 Nepali Children < 12 Months
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Example: Arm Circumference and Height

e Estimated mean arm circumference for children 60 cm in height

Arm Circumference and Height
150 Nepali Children < 12 Months
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Notice, most points don’t fall directly on the line: we are estimating
the mean arm circumference of children 60 cm tall: observed points
vary about the estimated mean
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The best “fit” is good enough?
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Assessing the Model. ..

® The least squares method will always produce a straight line,
even if there is no relationship between the variables, or if the
relationship is something other than linear.

®* Hence, in addition to determining the coefficients of the least
squares line, we need to assess it to see how well it “fits” the
data.We’ Il see these evaluation methods now.They re based
on the what is called sum of squares for errors (SSE).
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Sum of Squares for Error (SSE — )...

® The sum of squares for error is calculated as:

A}

X

SSE = (n- 1)( 2 2o )

and is used in the calculation of the standard error of estimate:

. - | SSE
o n—2

* If 5, is zero, all the points fall on the regression line.
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Standard Error...

* If s, is small, the fit is excellent and the linear model
should be used for forecasting. If s, is large, the model is
poor...

But what’s the ff of 5. fora model ?
cuto g00
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Standard Error...

® Judge the value of 5. by comparing it to the sample mean
of the dependent variable ().

For example,
e .= 3265 and
° y=14.84|

P . . o 11 77
so (relatively speaking) it appears to be "small”, hence our
linear regression model of car price as a function of
odometer reading is “good”.
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Testing the Slope...

® If no linear relationship exists between the two variables, we
would expect the regression line to be horizontal, that is, to
have a slope of zero.

®* We want to see if there is a linear relationship, i.e. we want to
see if the slope ( ) is something other than zero. Our
research hypothesis becomes:

H|: # O ﬁl
® Thus the null hypothesis becomes:
Hy: =0 B,
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Testing the Slope...

®* We can implement this test statistic to try our
hypotheses:
P — bl B ﬁl

* HO:B, =0 =

J.Tli.q.

®* where 5, is the standard deviation of b, defined as:

0 L

" '\/(H —.1)3_3_‘

® If the error variable is normally distributed, the test statistic has
a Student t-distribution with n—2 degrees of freedom.The
rejection region depends on whether or not we' re doing a
one- or two- tail test (two-tail test is most typical).
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Relationship with correlation

. oD
[ = .
'BSDy

In correlation, the two variables are treated as equals. In regression, one variable is considered
independent (=predictor) variable (X) and the other the dependent (=outcome) variable Y.
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Power of the model : Coefficient of Determination...

® Tests thus far have shown if a linear relationship exists; it is
also useful to measure the strength of the relationship.This
is done by calculating the coefficient of determination — R2,

R*=—2_ or R*=1- SSE

S8y 2(1 -y

® The coefficient of determination is the square of the
coefficient of correlation (r), hence R? = (r)?

R? has a value of .6483.This means 64.83% of the variation in
y is explained by your regression model. The remaining
35.17% is unexplained, i.e. due to error.
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Linear regression assumes that...

— The relationship between X andY is linear
— Y is distributed normally at each value of X

— The variance of Y at every value of X is the same

(homogeneity of variances)

— The observations are independent
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Regression Diagnostics...

How can we diaghose violations of these conditions!?

=» Residual Analysis, that is, examine the differences between
the actual data points and those predicted by the linear
equation...

There are three conditions about error that are required in order
to perform a regression analysis. These are:

* The error variable must be normally distributed,
* The error variable must have a constant variance

* The errors must be independent of each other.
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Example:

relationship between cognitive function and vitamin D

D. Moderate relationship

B0 — 7
Cross-sectional
o o o study of 100
o N % middle-aged and
o ® ® o®, ® =
S w0 ’ ° . older European
o, Y %o e ¢ men.
" o0 g ® ]
£ o oMk . L
A ®. 0’ Cognitive function
E 0 @ : =.'E-. ; :' ° is measured by
= . o ¢ the Digit Symbol
® e Lo Substitution Test
¢ (DSST).
7
[ [ [ [ [
0 a0 100 150 200

Vitamin D levels, nmol/L

Lee DM, Tajar A, Ulubaev A, et al. Association between 25-hydroxyvitamin D levels and cognitive performance in middle-aged
and older European men. J Neurol Neurosurg Psychiatry. 2009 Jul;80(7):722-9.



2017 Fall

D. Slope = 1.5 per 10 nmol/L
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130

SDx = 33 nmol/L
SDy= 10 points

Cov(X,Y) = 163
points*nmol/L

Beta = 163/332=0.15
points per nmol/L

= 1.5 points per 10
nmol/L

r=163/(10*33) = 0.49
Or
r=0.15 * (33/10) = 0.49
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Significance testing...

Slope
Distribution of slope ~ T, ,(B,s-e.( 3))

HO: B1 =0 (no linear relationship)
H1: B1 = 0 (linear relationship does exist)

. B-0
s.e.(53)
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Formula for the standard error of beta (you will not have to
calculate by hand!):
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Example: dataset 4

® Standard error (beta) = 0.03
® Tog =0.15/0.03 =5, p<.0001

® 95% Confidence interval = 0.09 to 0.21
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Residual Analysis: check assumptions

® The residual for observation i, e, is the difference between
its observed and predicted value

® Check the assumptions of regression by examining the
residuals
— Examine for linearity assumption
— Examine for constant variance for all levels of X (homoscedasticity)
— Evaluate normal distribution assumption
— Evaluate independence assumption

® Graphical Analysis of Residuals

— Can plot residuals vs. X
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Predicted values...

y. =20+1.5x,

For Vitamin D = 95 nmol/L (or 9.5 in 10 nmol/L):

y. =20+1.5(9.5) =34
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Residual = observed - predicted

D. Slope = 1.5 per 10 nmol/L
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(1) Residual Analysis for Linearity

g o® 00: QE
o0 ® ® o
® Not Linear ‘/ Linear

sSlide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

residuals
residuals
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(2) Residual Analysis for Homoscedasticity

Non-constant variance

@ residuals

residuals

® oo
00 o &

‘/ Constant variance

sSlide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall



2017 Fall

(3) Residual Analysis for Independence

Not Independent

%,

residuals

residuals

\/ Independent

X

residuals

sSlide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall
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Residual plot

residual plot
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Confounder

® Confounding variables ( third variables) are variables
that the researcher failed to control, or eliminate,
damaging the internal validity of an experiment.
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Multiple linear regression...

®* What if age is a confounder here?
— Older men have lower vitamin D
— Older men have poorer cognition
* “Adjust” for age by putting age in the model:

— DSST score = intercept + slope,xvitamin D +
slope, xage
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2 predictors: age and vit D...
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Different 3D view...
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Fit a plane rather than a line...
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O55T score (O ta BO)
40.0

d age

On the plane, the
slope for vitamin
D is the same at
every age; thus,
the slope for
vitamin D
represents the
effect of vitamin
D when age is
held constant.
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Equation of the “Best fit” plane...

®* DSST score = 53 + 0.0039xvitamin D (in 10 nmol/L)
- 0.46 xage (in years)

® P-value for vitamin D >>.05
® P-value for age <.0001

® Thus, relationship with vitamin D was due to
confounding by age!
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Multiple Linear Regression

®* More than one predictor...

E(y)= o+ B"X+ B, *W + B *Z....

Each regression coefficient is the amount of change in
the outcome variable that would be expected per
one-unit change of the predictor, if all other variables
in the model were held constant.
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Functions of multivariate analysis:

* Control for confounders

* Test for interactions between predictors (effect
modification)

* Improve predictions
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Procedure for Regression Diagnostics...

w N

N o U

Develop a model that has a theoretical basis.
Gather data for the two variables in the model.

Draw the scatter diagram to determine whether a linear model
appears to be appropriate.

Determine the regression equation.
Calculate the residuals and check the required conditions
Assess the model’ s fit.

If the model fits the data, use the regression equation to
predict a particular value of the dependent variable and/or
estimate its mean.
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Other types of multivariate regression

e Multiple linear regression is for normally
distributed outcomes

e Logistic regression is for binary outcomes

e Cox proportional hazards regression is used when
time-to-event is the outcome
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Your comments?

(1) Ziwrl{5? woia g

(2) — ML “AEMRE/KRERIE S, ATE N
H KA, ﬁ‘ﬁjtﬁd\iﬂﬂlﬁ X AT I ANFEX”
PRI RS ?  JE A2

(3) WNERARZ W NVPEH, HEFEX A R AR E ?
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Assignment: read the original paper, give your comments

® "Large-Scale Psychological
Differences Within China
Explained by Rice Versus
Wheat Agriculture,” by T.
Talhelm et al. Science, 2014.

09 MAY 2014
VOL 344, ISSUE 6184
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Pearson correlation assumptions

® absence of outliers
® normality of variables
® linearity

®* homoscedasticity.

_ covariance(x,y)
Jvar x./var y

r

What can we do if violations of these conditions happen
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Charles Spearman Karl Pearson
(1863-1945, UK) (1857-1936, UK)

Spearman rank correlation

a non-parametric version of the conventional Pearson correlation

48
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Spearman rank correlation

®* The Spearman rank correlation tests for
association without any assumption on the
association:

— Rank the X-values, and rank the Y-values.

— Compute ordinary sample correlation of the ranks:
This is called the Spearman rank correlation.



2017 Fall

Spearman’ s rank correlation

® Spearman’s correlation (often denoted by the Greek
letter p (rho) or as 7;) is then given by

62 _1d,2

—n

Where d. is the difference between the ith rank for
x and the ith rank fory

50
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Determining significance

which is distributed approximately as Student's t
distribution with n-2 degrees of freedom

51
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Example

In this example, the raw data in the table below is used to calculate the
correlation between the IQ of a person with the number of hours spent in front
of TV per week.

IQ, X; ¢ Hours of TV per week, Y; ¢

F
106 7 2 1
n -
86 0 ok
=
watched S 4
101 50 per week -
H -
99 28 =
103 29
= TS B T T T T T ——
97 20 85 90 95 100 105 110 115
113 12 1Q
112 6

110 17
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Example

1Q, X; ¢ Hoursof TVperweek, Y; ¢ rankz; ¢ ranky;, ¢ d;, ¢ d7 ¢

86 0 1 1 0 0

97 20 2 6 -4 16

99 28 3 8 -5 25
100 27 4 7| -3 9
101 50 5 10| -5 25
103 29 6 9| =3 9
106 7 7 3 4 16
110 17 8 5 3 9
112 6 9 2 7 49
113 12 10 4 6 36
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With df found, add them to find de =194

The value of nis 10.

6> d° . 6 x 194
n(n? — 1) 10(10* — 1)

p=1

p=-29/165=-0.175757575...
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P-value = 0.627188

* we can not reject HO
e HO: no association between 2 variables
e H1: association between 2 variables - 2 tailed
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Spearman correlation VS. Pearson correlation

Spearman correlation=1

10 Pearson correlation=0.88
i | i 1 |

1

A Spearman correlation of 1 results
when the two variables being

P compared are monotonically
' related, even if their relationship is
not linear. This means that all data-
points with greater x-values than
that of a given data-point will have
: : : : . greater y-values as well. In
_1[]_@ ......... .......... .......... .......... .......... , contrast, thIS doeS not give 3
: : : : : perfect Pearson correlation.

Y S R SR S SR
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Spearman correlation VS. Pearson correlation

Spearman correlation=0.35
Pearson correlation=0.37

5 °© o
5 e . o When the data are roughly
Wi e - S ...d elliptically distributed and there
% 20%% o

L oghe® o are no prominent outliers, the
> 0Ok L S ... @, i .
_ Spearman correlation and
| ° %°co% eo | Pearsoncorrelation give similar
o ©8¢ " o values.
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Spearman correlation VS. Pearson correlation

Spearman correlation=0.84
Pearson correlation=0.67

The Spearman correlation is less
© e| sensitive than the Pearson

o! correlation to strong outliers that

| arein the tails of both samples.

That is because Spearman's rho

limits the outlier to the value of its
rank.
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* To calculate a Spearman rank-order correlation
and Pearson correlation on data

- 56 75 45 71 62 64 58 80 76 61

66 70 40 60 65 56 59 77 67 63



