
--- R programming for Biostatistics and 
Bioinformatics



 Exponential Distribution
Gamma Distribution
 Beta Distribution

Hands-on Exercises



 Continuous distribution for X ≥ 0
Given X ~ Exp(λ), then the pdf for X

 the cdf for X
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mydexp <- function(x, lambda) {
lambda * exp(-lambda*x)

}
>>> x <- seq(0, 10, by=0.1)
>>> y1=mydexp(x,2)
>>> y2=mydexp(x,0.5)
>>> plot(x,y1,type=‘l’, col='red')
>>> lines(x,y2, col=‘blue’)
>>> text(locator(2),  col=c(‘red’, ‘blue’), 

c(expression(lambda==2),expression(lambda==0.
5)))



 Let X1,X2, …, Xn ~ Exp(λ) are i.i.d, then

 If X ~ Exp(λ) and Y = exp(- λX), then

Use histogram to test the above two 
properties.

( )λ,~ nXi i Γ∑
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Gamma distribution is usually used for 
modeling highly skewed parameters, 
especially in the context of Bayesian 
statistics

 If X~Gamma(α), then the probability density 
function for X is 
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 If X~Gamma(α,β), then the probability 
density function for X is 
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 The Beta density function is a very versatile 
way to represent outcomes like proportions
or probabilities.

 The standard beta distribution: 
 pdf
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 Initial State: begin=1
 State Space: s = {1,2}
Observation space: o = {“a”,”b”,”c”}
 State Transition Matrix:
 t = matrix(c(0.7,0.4,0.3,0.6), ncol=2, nrow=2)
 t[1,2] denotes the transition probability from 

state 1 to state 2
 Emission Matrix:
 e = matrix(c(0.3, 0.4, 0.3,0.5, 0.1, 

0.4),ncol=3,nrow=2,byrow=T)
 e[1,3] is the conditional probability of 

observation c under the state 1



 Simulate 1 Markov chain of the states with 
length n=1000 based on the above given 
information

 Summarize the frequencies of the state 1, 2 
in the Markov Chain

 Simulate 10 observation based on the above 
Markov chain and the given emission matrix 



Here is the Gamma function

 Prove that
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 If X~Gamma(α,β) and Y=βX, prove that 
Y~Gamma(α)

 In the density function for Gamma 
distribution, α is called the shape parameter; 
and β is called the inverse scale parameter, 
also known as rate parameter.

Gamma(α) is named the basic Gamma 
distribution, which is the special form for
Gamma(α,β) when β=1.



 Plot the density curves in a single diagram 
for Gamma distribution when (dgamma())
a) α=2, β=4
b) α=4, β=4
c) α=2, β=1
d) α=4, β=1
or
a) α=1, β=1
b) α=1, β=2
c) α=1, β=4



 If X1 and X2 are independently distributed and X1 ~ 
Gamma(α1,β), X2 ~ Gamma(α2,β), then X1/(X1+X2)  ~ 
Beta(α1, α2)

 Write a function to simulate a Beta sample with two 
parameters (α,β respectively) using the rgamma() function 
(sample size n=100).

 Plot the density curve of beta distribution when (dbeta())
a) α=1, β=1
b) α=1, β=1.5
c) α=1, β=2
d) α=1, β=4
e) α=2, β=1
f) α=4, β=1
g) α=1.5, β=1



We have two prior distributions for modeling 
the probability that a specific event occurs, 
Beta(10,10) and Beta(1000,1000), which one 
lends you more confidence that the 
probability p=0.5? Why? 



 If Xi ~ Gamma(αi,β), then (Xi/sum(X))  ~ 
Dirichlet(αi)

Write a function to simulate a Dirichlet
sample with 4 parameters (10,10,10,10 
respectively) using the rgamma() function 
(sample size n=100).

 For the given two distributions Dirichlet(1,1,1,1) 
or Dirichlet(1000,1000,1000,1000), which is more 
confident that the four numbers are equal? why?



rdirichlet <- function (n, alpha) 
# n: number of samples
# alpha: a vector, the parameters for each gamma distribution
{

p <- length(alpha)
x <- matrix(rgamma(p * n, alpha), ncol = p, byrow = TRUE)
sm <- x %*% rep(1, p)
x/as.vector(sm)

}



 Experiment: Coin tossing
 Prior knowledge: the chance of getting head 

p ~ beta(10, 10)
We tossed the coin 100 times, and get 45 

heads
 Estimate the posterior distribution for p 

using Bayesian theorem
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 Create a function that generates a single random 
nucleotide X where P(X = “G”) = 0.30, P(X = “A”) 
= 0.20, P(X = “C”) = 0.25, and P(X = “T”) = 0.25
Hint: You may want to use the runif() function to 
do this.

 Using the function you have created, create 
another function that generates a random 
nucleotide sequence of length n.

 Generate a random nucleotide sequence of 
length 100 using the sample() function, where 
the probability of each nucleotide is given as 
above.
Hint: type ‘?sample’ for more information.





 Estimating parameters is easier than dealing with real 
life. 

 Statisticians are significant 
 I always wanted to learn the entire Greek alphabet. 
 The probability a statistician major will get a job is 

> .9999. 
 If I flunk out I can always transfer to Engineering. 
 We do it with confidence, frequency, and variability. 
 You never have to be right - only close. 
 We're normal and everyone else is skewed. 
 The regression line looks better than the 

unemployment line. 
 No one knows what we do so we are always right. 



Three professors (a physicist, a chemist, and a statistician) are 
called in to see their dean. Just as they arrive the dean is called 
out of his office, leaving the three professors there. The 
professors see with alarm that there is a fire in the wastebasket. 
The physicist says, "I know what to do! We must cool down the 
materials until their temperature is lower than the ignition 
temperature and then the fire will go out.“ 

The chemist says, "No! No! I know what to do! We must cut off the 
supply of oxygen so that the fire will go out due to lack of one of 
the reactants." 

While the physicist and chemist debate what course to take, they 
both are alarmed to see the statistician running around the room 
starting other fires. They both scream, "What are you doing?" 

To which the statistician replies, "Trying to get an adequate sample 
size."



I read that there is about one chance in one 
million that someone will board an airplane 
carrying a bomb, and I started carrying a 
bomb with me on every flight I take. The way 
I figure it, the odds against two people 
having a bomb on the same plane are 1 in a 
trillion.
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