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1. FRAKZAXNEEEZFETL

T FEiEikik HFEX
FEG5 Logic
3 there exists Bl
% for any T FAEEAL
P=q p implies q / if p, then q # p TAEF175] q
pyq pif and only if q / p is equivalent to q pFHT a
£4 Sets
xe A x belongs to A / x is an element of A x A AFHE
x& A x does not belong to A x FREEG ANYLE
A B Ais contained in B / A is a subset of B AZB#THE
A5 B A contains B / B is a subset of A A= BHRXE
AAB A cap B/ A meet B / A intersect B AFeB ¥R E
AUB A cup B/ A join B/ A union B AFe B Wy FE
A\ B A minus B / the difference between A and B A A2 B4 £ £
AxB A cross B / the Cartesian product of A and B A Fa B 449 % F R A2
EH Real numbers
x+1 X plus one
x—1 X minus one
x=x1 X plus or minus one
Xy xy / x multiplied by y
(x+y)(x—y) x plus y, x minus y
z X overy
y
= the equals sign
x=5 x equals 5/ x is equal to 5
fo x (is) not equal to 5
Y=y X is equivalent to (or identical with) y
x>y X is greater thany
BEY X is greater than or equaltoy
X<y x is less thany
BEY x is less than or equal toy
0<x<l zero is less than x is less than 1
0<x<1 zero is less than or equal to x is less than or
equalto 1
| x| mod x / modulus x
X’ x squared / x (raised) to the power 2
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X cubed

x to the fourth / x to the power four

x to the nth / x to the power n
x to the (power) minus n

(square) root x / the square root of x
cube root (of) x

fourth root (of) x

nth root of x

x plus y all squared
x over y all squared

n factorial

x hat

X bar

x tilde

xi / x subscript | / x suffix | / x sub i
the sum from i equal one to a,/

the sum asiruns from 1 to n of the q,

Linear algebra

the norm (or modulus) of x

OA / vector OA

OA / the length of the segment OA

A transpose / the transpose of A
Ainverse

Functions
fx / f of x / the function f of x
a functionffromSto T

x maps toy / x is sent (or mapped) toy

f prime x / f dash x / the first derivative of f
with respect to x

f double-prime x / f double-dash x / the
second derivative of f with respect to x

f triple-prime x / f triple-dash x / the third
derivative of f with respect to x

f four x / the fourth derivative of f with
respect to x

the partial (derivative) of f with respect to x1

the second partial (derivative) of f with

B2 x 89704k
%2 OA
KB OAKE

SB[ A BG4EFE
SETE A G435 4ETE

x 69 :H % f

B F RINESS
2 T 6 bt

x B g3 y

f 2+ x 89 —MF4%
f 2t x 9 =M-F3
f 2 x 69 =54k

f3F x B9 MS-%%&

f 2 x1 89—t
#
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O f respect to x1 f 2t x1 89 =17

ox’ #

. ' the integral from zero to infinity a3 F E K F) L

| % RS

0 the limit as x approaches zero x 183 0 B g FR

s

lim the limit as x approaches zero from above x M_Ei83E 0 BT 49

x40 the limit as x approaches zero from below MR

_ log y to the base e / log to the base e of y /

}Ln}) natural log (of) y

log, ¥ log y to the base e / log to the base e of y / y 6 B AR
natural log (of) y

Iny

2. A4 (Calculus)

Calculus, which originally means a small stone used for counting, is a branch in mathematics
focused on limits, functions, derivatives, integrals, and infinite series. It has two major
branches, differential calculus and integral calculus, which are related by the fundamental
theorem of calculus. Calculus is the study of change, in the same way that geometry is the
study of shape and algebra is the study of operations and their applications to solving
equations. A course in calculus is a gateway to other, more advanced courses in
mathematics devoted to the study of functions and limits, broadly called mathematical
analysis.

Goal:

(1) use linear, polynomial, rational, algebraic, exponential and logarithmic functions in
applications

(2) determine the limits of functions graphically, numerically and analytically

(3) recognize and determine infinite limits and limits at infinity

(4) determine the continuity of functions at a point or on intervals

(5) understand the interpretation of the derivative as the slope of a line tangent to a graph
and as the rate of a dependent variable with respect to an independent variable, and
determine the derivative of a function using the limit definitions.

(6) Use differentials in approximation problems

(7) Determine derivatives using the power rule, sum & difference rules, product rule,
qguotient rule, and chain rule

(8) Determine derivatives of exponential and logarithmic functions

(9) Determine higher order derivatives of a function

(10)Understand velocity as the derivative of position and acceleration as the 2" derivative of
position

(11)Determine the absolute extrema of a continuous function on a closed interval.
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(12)Use the first and 2" derivatives to analyze and sketch the graph of a function, including
determining intervals on which the graph is increasing, decreasing, constant, concave up,
concave down, and finding relative extrema and infection point

(13)Apply differential calculus to application.
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> f:A->B

- Spoken: “f is a function from A to B”, or “f maps A to B”
> &X: AB HES, £4 A KA (domain) , m&ES B NARA LR
(codomain) ¥z (target)
EAMA: ML (limit) . %% (continuity) A= 4% ( differentiability )
F % (derivative) : — M54k (first-order derivative ) . =% 4% ( second-order
derivatives ) . Z¥F#& (higher-order derivatives ) . 1&-%& ( partial derivatives )

# 4 (integral ) : £ 3%.& (left endpoint ) , 4 3% .% ( right endpoint ) , # % %
(trapezoid Rule) , ¥ .5 (midpoint rules) , #/8424 ( numerical integration) , ¥
A% (Simpson’s rule) , Accuracy of integration rules (A2 iE 69 A ) , EAH
( Double integration )

#.%] (sequence) 524k (series) , KL I (maxima and minima) . #ék

(convergence) . 1% vt 483 ( Fourier series )
3. &4 FK (Linear Algebra)
3.1 &&= (Vector) #9+tHE (Ao, WA, 4MR) . 583k (norm)

3.2 4EfE (Matrix) 492 F (A2 F%E) . 784 (norm) . 477X (determinant) .
#% (rank) . #4EM (inverse matrix) . $/24EM (identity matrix) . JEXJEM%
(orthogonal matrix ) . X #R4EM% ( symmetric matrix) . EZ 4% ( positive definite
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matrix ) . 1EF Z 4E% ( positive semi-definite) . £ = A £/ (upper triangular
matrix) . T =A4E% (lower triangular matrix ) . %} A 4E% ( diagonal matrix )

3.3 £ 4 f% ( matrix decomposition) : LU 4 # ( LU-decomposition ) . Cholesky 4~
MR . I F14 » & ( singular value decomposition, SVD) . QR 4 f# ( QR-

decomposition ) . Schur 4% ( Schur decomposition )
3.4 454E{4 (Eigenvalues) #F=4¥4E@ % (eigenvectors)

3.5 % | X, ( polynomials ) F=#% 43545 ( Splines interpolation ) : =X # 4 ( cubic
splines) . /) —4HA (least squares interpolation )

46 % 5% £ microarray 3B AT A LB 0AT
¥ A5 #% (singular value decomposition, SVD )

Let X e R™" with rank r, m > n>r. In the case of microarray, x; is the expression level

of the i gene in the | assay.
The singular value decomposition of X is as following:
X=Usr’

where U € R™", § € R™ is a diagonal matrix, and J € R"" . The columns of U are called

the left singular vectors, {u,}, which form an orthonormal basis for the assay expression

profiles so that

I, wheni=j
u u, = .
710, otherwise

The columns of V' contain the elements of the right singular vectors, {v,} , which form an

orthonormal basis for the gene transcriptional responses. The elements of S are only

nonzero on the diagonal, and are called the singular values. Thus, S =diag(s,,s,,...,s,).

Furthermore, s, >0 for k €[1,r],and s, =0 for k €[r+1,n]

Row labels
er 1

- Row Sample Group

1  ALL_20185_B-cel ALL_B2
2  ALL_21302_B-cel ALL_B2
3 ALL_17281_B-cel ALL_B2
4  ALL_19183_B-cel ALL_B2
5  ALL_28373_B-cel ALL_B2
6
7
8

Cluster 2 Clust:

ALL_5932_B-cell ALL_B2
ALL_11103_B-cell ALL_B2

ALL_20414_B-cell ALL_B2

9  ALL_17929_B-cel ALL_B1

[ ]l ] 10 ALL 549 B-cell |ALL_B1

11 ALL_7092_B-cell ALL_B1

[ ‘ IR |
(11 .‘l (0000010 0 ll 12 ALL 18239 B-cel ALL B1

L 1 13 ALL_9335 B-cell ALL B1
[ il \‘ AR 14 ALL 14749 B-cel ALL B1
| 15 ALL R11_Bcel ALL B1

16 ALL_23953 _B-cel ALL_B1

17 ALL_19769_B-cellALL_B1

18 ALL_9692 B-cell ALL B1

AT | Il
(RS R TR NI IR 10 2L Ro3 Bcel ALL BA
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X=UST"

Z igenasm\y Singular Eigengene
Value a'
a_}' 11 uk‘ 71 v n J
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AR 1 nxn nxn

SVD application in microarray data analysis

As we mentioned above, the right singular vectors span the space of the gene transcriptional

responses {gl.} and the singular vectors span the space of the assay expression profiles
{a].}. And the left singular vectors {u, } are referred as eigenasays and the right singular
vectors {v,} as eigengenes.

In systems biology applications, we wish to understand relations among genes. The signal of

interest in this case is the gene transcriptional responses, {g;}, and

.
8 = 2 Uy SiVi
k=1

which is a linear combination of the eigengenes {v,}. The i row of U, g.', contains the

coordinates of the i gene in the coordinate system (basis) of the scaled eigengenes, s,v, . If

¥ <n, the transcriptional responses of the genes may be captured with fewer variables

using g,' rather than g, . This property of the SVD is sometimes referred to as

dimensionality reduction.

In diagnostic applications, we may wish to classify tissue samples from individuals with and

without a disease. In this case, the signal of interest is the assay expression profile a;, which

is reducing the number of the variable for interpretation of the assay expression profiles.

,
a; =) vys,
k=1

Which is a linear combination of the eigenassays {u, }
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Visualization of the SVD of cell cycle data

4. 57 #2 ( Differential Equation )
(1) &HFJE K —MF 25 F 42 (linear and nonlinear first order ODEs )
(2) A F % 389 5 W F #4575 42 (higher order ODEs with constant coefficients)
(3) ATH®F 42 ( Cauchy’s equation) FeBk3i#2 ( Euler’s equation )
(4) 353547 E # (Laplace transforms )
(5) #&fk# 42 ( partial differential equation )
(6) FEALIK 7 #2 ( stochastic differential equation )

A differential equation is an equation relating a function to one or more of its

derivatives. An initial value problem is a differential equation

Where the initial condition, x(7,) = x,, is specified.

1) How to rigorously define a differential equation or system of differential

equations?

2) Feasible solution or the solution is unique?
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3) How to find the unique or non-unique solutions?

Existence and Uniqueness of Solutions
Theorem 1 If
yp(t)y=g(t)
is a differential equation such that y(z,)=y,,and p(¢) and g(¢) are continuous on

the open interval / =(a, ), then there exists a unique function y = ¢(¢) satisfying

the differential equation and the initial condition on I .

Wy F AR R G AW 8

dx;
a = Kyady + Kogitp + Kgadtg + o

d}ld_
a = Kigdy + Kogitp + Kggity + ..

5. ¥/l it EAZAAALE L ( Numeric Analysis & Optimization )
(1) KA JE K HERIF 2%  (Solution of linear and nonlinear algebraic

equations )
(2) #F %24 (integration of trapezoidal ) Fe<F-&#& % (Simpson’s rule)
(3) #hrF #2869 £ F F % ¥k (single and multistep methods )

Numerical methods, as an efficient supplement to analytical methods, are playing a
central role in bioinformatics data analysis and algorithmic development. In this
course you should learn to differentiate numerical methods from analytical methods.

5.1 Finding the roots for f(x)=0

®. Bisection method: based on the continuity of the function f(x)
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@. Newton method: based on approximating the function by tangent lines

®. Secant method: based on approximating the function by secant lines
5.2 Convex optimization

$ 4% (simplex method )

£ MHEHLXR] (linear programming )

— R MK (quadratic programming )
Optimization problem without constraints
Optimization problem with equality constraints

Optimization problem with inequality constraints

900 ©®00 e

5K (dynamic programming )
a) Shortest path problem

b) Best pairwise sequence alignment
6. #E ( Probability )

LA I 0 TR IR IR T KRR R0 AT 3) 75 2 A0 AR REAHLAE,
A, FAUE R T AAITILE R R T AIAR, R T s TR R E 15 6
B2, MAUET AR T A M, Bk, HFO2WHFT Laplace 8941 T MG %, To
B2 T AR o K B RS 6 TR AR HAE S, Blde, AT O 2R
AR &, ANV AT BT A 69 7T At 4 RONRA BT 18] RAb — — & REF— R 69 A4 R R AL
.
6.1 #4 (Concepts)
A probability of an event A: Pr(A4) €[0,1]
The probability of the complement event of A: P(4) =1-P(4)
The joint probability or intersection of two independent events A and B:
P(4 and B) =P(AN B)=P(A)P(B)
The probability of the union of two mutually exclusive events A and B:
P(A4 or B)=P(AU B)=P(A)+P(B)
If the events are not exclusive then
P(4 or B)=P(AuUB)=P(A)+P(B)-P(4ANB)
P(ANB)

The probability of A given B (conditional probability): P(4|B) = P(3)

, thus

P(ANB)=P(A| B)P(B)
P(ANB) _ P(B| A)P(A)
P(B)  P(B| A)P(A)+P(B|A)P(A)

Bayesian theorem: P(4|B)=

6.2 BEE 5 AR ( Probability distributions )
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6.2.1 BIMELHA (discrete probability distribution )
(1) =\ KX2# (binomial distribution )

#H AT n K success/failure M %2 5236 ( Bernoulli experiment ) 2% W % X 5%
(Bernoulli trial ) 152 x X success 49#EFE, % n=1 B, —AKXHALIRA N%

5% (Bernoulli distribution ) .

Notation: X ~B(n,p), where ne N* represents the number of trials, and p €[0,1]

is the success probability in each trial.
Possible outcomes: x < {0,...,n}

Probability density function (pdf): f(x;n;p) =Pr(X = x) = (nj p (1-p)"
X

Cumulative density function (cdf):

[ ] .
F(x;m;p)=Pr(X < x) :2[ j B

i=1

= I _,(n-x,x+1)=(n- x)[ij J'Olfpt”’x’l(l —t)“dt

For x < np, we can derive the upper bounds for the lower tail of the distribution
function:

2

E X T A% X (Hoeffding’s inequality) : F(x;n,p) < eXPLZMJ
2

it X % X (Chernoff’s inequality ) : F(x;n,p)<eXp£2@}

Mean: jg=np

Variance: &° =np(1-p)

Skewness: 12
np(1-p)
np(1-p)

B If X~B(n,p)and Y ~B(m,p) are independent binomial variables, then

X +Y isalso a binomial variable: X +Y ~B(n+m,p);
B Whenn=1, X ~B(1,p)= X ~Bern(p);

B When nis large enough, and p is not near to 0 or 1, then an excellent
approximation to B(n,p) is given by normal distribution: N(np,np(1-p));
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B Asnis sufficiently large while the product p is sufficiently small, another
approximation to B(n,p) is Poisson distribution with parameter A =np;

B As napproaches infinity while p remains fixed, the distribution of

X-np

———— approaches the standard normal distribution.
np(1-p)

(2) BIUTH%H (hypergeometric distribution )

#)JUTHA (hypergeometric distribution ) ZMA—ANF FRAEKR P £ 4 n K Tk
E (without replacement ) FRAEmIh X K egHEE; MER IR X o FAM, (2=
R XA A K E ) BAE (with replacement ) , L3k 2 DA R BRAE I 6 L5
TEAME, EERFPERRGFLELY, RIEFERALT K.

MALE & X ~ Hypergeometric(N,m,n)

X n—x

=0y
MR ERB (N, mn)=P(X =x)=~"~— "2

)

(N =2m)(N —1)"*(N -2n)
[nm(N —m)(N —n)]"*(N -2)

4§ & (kurtosis) #...
Let X ~ Hypergeometric(N,m,n) and p=m/N

1B (skewness) #

¢ Ifn=1then X ~Bern(p);

¢ Let Y ~B(n,p);If Nand M are large compared to n and p is not close to 0 or
1, then X and Y have similar distributions, i.e., P(X < k) = P(Y < k);

¢ Ifnislarge, N and m are large compared to n and p is not close to 0 or 1, then

P(X<k)= CI{MJ (standard normal distribution function).
np(1-p)

(3) Poisson A
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The Poisson distribution (or Poisson law of large numbers) is a discrete probability
distribution that expresses the probability of a number of events occurring in a fixed
period of time (or in other specified intervals such as distance, area or volume) if
these events occur with a known average rate and independently of the time since

the last event.

If the expected number of occurrences in the interval is 4, then the probability that
there are exactly n occurrences (n=0,1,2,...) is equal to

Ale
n!

f(n )=

(4) A=A X2SA (Negative binomial distribution )

(5) JUT4# ( Geometric distribution )

6.2.2 #H4WESH (continuous probability distribution )
(1) 344 2% # (Uniform distribution )

(2) EA 2 (Normal distribution )

(3) Fad

(4) -F# %A (Chi-square distribution )

(5) #54k45# (exponential distribution )

(6) Gamma %A

(7) FE3A A (Laplace distribution )

(8) xF#iE&H A (Lognormal distribution )

(9) F 4 t 5 (student’s t distribution )

(10) A &4 A ( Weibull distribution )

6.3 #EF oA 69444 ( Simulation of random probability distribution )

FEEIEHTF BAVE T F B RES A RATAEDL, A IERLA T SRR
HIEGH 5T A IEZ B NG IHMEZ B ERRERETEE, AMEZLATH
J R AE SRR ARG Bk e A TR ey UM,

6.4 & RF}+ X 4% ( Markov Chain)

o RA KR4, AR BHATIEA FRE A K 4% (discrete-time finite Markov
chain) 3 & ¥t iE A PR B KA K AEA (discrete-time finite Markov model ) ,
AL RA K ARG RAKAEA (Markov model ) . FE—AA R EL X,
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NATHERIRE (states) G,...Gy. EHEANIZI =12, —F L RAREER 4
A TFE—RAE. ARZ B0 2] r+1, KRETEES X AERE T HBESR
#e, BRI 1 8RE G AR T2 60RAE G, Rk LR, LhLimE

P, =Pr(G,|G,).i,j=1,...,N #Ah B RAREk e RAFHYARE, T RIS
PeRYVY 697 X,

Pu Pn " Py
p= p‘21 p?z p?N
Pyvi Py2 7 Pww

RA&EHBAFEFER (matrix of transition probabilities) P #97L% p, & FARE
iR joatE, BvVieXx,) p,=1.

jeXx

A B AL IE ot ak AT 5 49 72X 324E ( Open Reading Frame, ORF)
#4)F

-—

x1 : ATGCTATTGATTTAA
x2 : GTGAAAGACTTCTAA
x3 : ATGCCCGATGAACGCTAG
x4 : ATGAAGCATGATTAA

W A2 T4 2] T @ bR SRR e B RAFRARR T H.
T

A C G 0
0 1/2 1/2 0 0 0
A 4/13 2/13 2/13 5/13 0
C 1/9 2/9 2/9 2/9 2/9
G 5/7 2/7 0 0 0
T 1/10 1/10 3/10 3/10 1/5
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6.5 28 KA+ (AR (Hidden Markov Model )

A hidden Markov model is a Markov model where the rules for producing the chain
are unknown or “hidden”. The rules include two probabilities: @D that there will be a
certain observation and @ that there will be a certain state transition, given the

state of the model at a certain time.

R Q K 5

al

a2

A3
Bl B2 B3 B5

The hidden Markov Model (HMM) method is a mathematical approach to solving
certain types of problems:

(1) Given the model, find the probability of the observations;

(2) Given the model and the observations, find the most likely state transition
trajectory;

(3) Maximize either (1) or (2) by adjusting the model parameters.
The corresponding solutions include the following algorithms:
(1) Forward-backward algorithm

(2) Viterbi algorithm
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(3) Baum-Welch algorithm

The HMM method is generally used in pattern recognition problems, anywhere
there may be a model producing a sequence of observations. It is widely used in
bioinformatics including sequence alignment, gene prediction, structure prediction
and other data mining approaches.

Applications
(1) Finding multiple sequence patterns, e.g., motif, conserved domain

(2) Gene prediction, including the gene structures

2
——— BB
yhase 1 .

Ve

z
E-Eo- -

¢
T S M Y 3 T M L S S
\. f (“()D)()N /

7 1 J
| 0

~—{5ToP—{x]

Architecture of Eukaryotic EHMM

Pedersen 1.S., Hein J. Gene finding with a hidden Markov model of genome
structure and evolution (2003) Bioinformatics, 19 (2), pp. 219-227.

7. %t 5 (Statistics )
7.1 Descriptive statistics of continuous data
(1) Location: mean (arithmetic, geometric, harmonic), median
(2) Dispersion: standard deviation (sd), coefficient of variation, percentile

(3) Shape: absolute deviation, variance, semivariance, skewness, kurtosis,

moments, L-moments
7.2 Descriptive statistics of categorical data
(1) Frequency, contingency table

7.3 Statistical graphics
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(1) Barplot, biplot, boxplot, correlogram, forest plot, histogram, Q-Q plot, stemplot,
scatterplot

7.4 Exploratory data analysis

(1) Inference: Confidence Interval (Cl for frequentist), credible interval (Cl for
Bayesian)

(2) Experiment design: Case-control study, cohort study, observation study,
perspective study, replication, sensitivity and specificity

(3) Sample size determination: statistical power, effect size, standard error
7.5 Parameter estimation

(1) Bayesian estimator, maximum likelihood estimator (MLE), method of moments,

minimum distance
7.6 Hypothesis testing

(1) Z-test (normal), student’s t-test (paired or unpaired), F-test, Chi-square test,
Pearson’s Chi-square test, Wald test, Mann-Whitney test, Shapiro-Wilk test,
Fisher’s exact test, Wilcoxon signed-rank test

7.7 Analysis of variance
7.8 Correlation analysis

(1) Pearson product-moment correlation, rank correlation (Spearman’s rho,

Kendall’s tau), partial correlation, confounding variable
7.9 Regression analysis

(1) Linear regression: simple linear regression, ordinary least squares, general

linear model, analysis of variance, analysis of covariance

(2) Non-standard: nonlinear regression, nonparametric, semiparametric, robust

regression

(3) Non-normal errors: Generalized linear model (GLM), binomial regression,

Poisson regression, Logistic regression
7.10 Multivariate data analysis

(1) Multivariate regression, principal components regression, factor analysis,

cluster analysis, copulas
7.11 Survival analysis

(1) Survival function, Kaplan-Meier, Logrank test, Failure rate, Proportional
Hazards model, Accelerated failure time model
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7.12 Time series analysis

(1) Decomposition, trend estimation, Box-Jenkins, ARMA models, spectral density

estimation

8. B+ (Graph Theory)

As shown above, a graph is a pair of sets (V, E), where

v' Vis anonempty set whose elements are called vertices.

v' Eis a collection of two-element subsets of V called edges.

The vertices correspond to the dots in the above network, and the edges correspond to the

lines. Thus, the dots-and-lines diagram above is a pictorial representation of the graph (V, E)
8.1 Topological properties of a network

(1) node connectivity, also called degree of the node

(2) clustering coefficient

(3) the shortest path

(4) Motif discovery

(5) Module identification
8.2 Dynamic properties of a graph

(1) Flux balance analysis (FBA)

(2)
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A& G AR EAE A W 2B

taEarmaEANE&R Y, EORTAHTENT A, kG CCSB-HI1 (Rual et
al., Nature 2005, 437:1173-1178 ) #= ( Stelzl et al., Cell 2005, 122:957-968 ) 4948 &
VER R R L&Ak & 0930 . AEIE B AR IAT R 09 B A A8 X LRk L6948
ZAER (LC) MABEER AT, ZARRIIBR B IFem L ER R L&k
7, Rual #= Stelzl € &9 & &A1 &, Rual #= LCI Al ¥4 & kT, Stelzl #= LCI
MAHERT, EaJUTREHZLESE (RGBZRE) .

9. RE%]

A. ﬁl])ﬂdi=e"7’rnlime":l, B e 0 RBBET.

X x—0
B. HunyAlA v A w g waRegmiRA 24 (dot product) #97 X & *.

; v, w =
e cos0=%, AFo-@Tviwii kA,
viw

C. There are three commonly used studied metrics for the set R".

N
i Euclidean distance: d(X,y) = (Z(X,- -V )2 )1/2

i=1

N
. Manhattan distance: D(x,y) = Z| X, =y |

i=1
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iii. Chebyshev distance: d_(x, y) = max(|x, -y, |)

i=1

N /p
iv.  The more general Minkowski distance: d, = [Z| X, =y |pj

Graph each of the following on Cartesian coordinate systems

V. A={xeR2:d(0,x)Sl}
vi. A={xeR2:D(0,x)Sl}
vii. A ={x eR’ :doo(O,x)S 1}

D. M 4ZXAIED (Hamming distance) ? Z"54AFE# (Manhattan distance ) ?
R K4 FE B ( maximum component distance ) ? BR K 3E & ( Euclidean
distance ) ? BAST KATAIEH ( Minkowski distance ) ?

‘. ﬁw%fiﬁﬁ\ﬁﬁiéﬁﬁii%=axy, S g hE s, R ST AL el AR A
X

22 w3 Y - By
dx y
F. Use calculus to find the absolute maximum and minimum, if either exists for the
function f(x) =2x" —3x”> —12x+24 on these three intervals:
a) [-3,4]
b) [-2,3]
c) [-2,1]
G. HHEGOH LR ML T mARESEE (adjacency matrix) #9H X, FARIEZIE
MRt R R AT L.
Ho & f(x) =X +x & %% (convex function ) i 2 W %% ( concave
function) ? T RAFLRE] X 18] #E4T 39
I. 5 3LBA H 4240 feasible solution #= optimal solution #9852 #= [X 51,
. EAFE TESAEF FIE (median) F23{E (mean) AL E .

=

0s

08

04

0.2

0.0
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K. What is the negation of the statement “Vy > 0,3c that f(c) =y "?

L. IfT: R’ >R’ is a linear transformation for which

1 1 2
T\ 0|=|1|,T|1|=|1],
1 0 0
3
then 7|2 |="7
2

3 -6
M. Calculate the angle between the vectors L} and { 5 }

N. The base composition of a certain microbial genome is p. = p.=0.3and
p, = pr =0.2. We are interested in the di-nucleotides where the letters are
assumed to be independent. There are 4 x 4=16 dinucleotides.

i Present these 16 probabilities in a table. Do your table sum to 1.0?

ii. Purine bases are defined by R={A4,G} and pyrimidine bases by
Y ={C,T}. Let E be the event that the first letter is a pyrimidine, and F
the event that the second letter is A or C or T. Find P(E), P(F),

P(EUF), P(ENF) and P(F°).
i.  Set G={CA,CC}.Calculate P(G|E), P(F|GUE), P(FUG|E).

0. Here is the transition matrix P for a first-order Markov Chain with four
states {4,C,G,T}. Find the stationary distribution of the chain; that is,

solve the equations 7 = 7P subject to the elements of 7 begin positive and
summing to 1.

A C G T
A(0423 0.151 0.168 0.258
C|0.399 0.184 0.063 0.354
G| 0314 0.189 0.176 0.321
T10.258 0.138 0.187 0.415

(#1148, 2010-4-9, 157 &)
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Examples of applications of optimization in systems biology, classified by type of
optimization problem (note that several types overlap)

Problem type or application

Description

Examples with references

Linear programming (LP)

Naonlinear programming (NLP)

Semidefinite programming (SDP)

Bilevel optimization (BLO)

Mixed integer linear programming (MILP)

Mixed integer nonlinear programming (MINLP)

Parameter estimation

Dynamic optimization (DO)

Mixed-integer dynamic optimization (MIDO)

linear objective and constraints

some of the constraints or the objective
function are nonlinear

problems over symmetric positive semidefinite
matrix variables with linear cost function and
linear constraints

objective subject to constraints which arise
from solving an inner optimization problem

linear problem with both discrete and
continuous decision variables

nenlinear problem with both discrete and
continuous decision variables

model calibration minimizing differences
between predicted and experimental values

Optimization with differential equations as
constraints (and possible time-dependent
decision variables)

Optimization with differential equations as
constraints and both discrete and continuous
decision variables (possibly time-dependent)

maximal possible yield of a fermentation [83];
metabolic flux balancing [18,83]: review of flux
balance analysis in [30]; use of LP with genome
scale models reviewed in [27]: inference of
regulatory networks [40,42]

applications to metabolic engineering and
parameter estimation in pathways [69]:
substrate metabolism in cardiomyocytes using
13C data [84]; analysis of energy metabelism
(85]

partitioning the parameter space of a mode!
into feasible and infeasible regions [86]

framework for identifying gene knockout
strategies [87]; optimization of metabolic
pathways under stability considerations [88];
optimal profiles of genetic alterations in
metabolic engineering [89]

finding all alternate optima in metabolic
networks [90,91]: optimal intervention
strategies for designing strains with enhanced
capabilities [91]; frameworlk for finding
biological network topologies [47]: inferring
gene regulatory networks [41]

analysis and design of metabolic reaction
networks and their regulatory architecture
[92,93]: inference of regulatory interactions
using time-course DMNA microarray expression
dara [45]

tutorial focused in systems biology [53]:
parameter estimation using global and hybrid
methods [52,54,55,59,70]; parameter
estimation in stochastic models [58]
discovery of biological network design
strategies [94]; dynamic flux balance analysis
[29]: optimal control for modification of self-
organized dynamics [95]; optimal experimental
design [66]

computational design of genetic circuits [76]




