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XML 
(Extensible Markup Language) 

扩展标记语言
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Introduction


 
XML:  Extensible Markup Language


 

Defined by the WWW Consortium (W3C)


 
Derived from SGML (Standard Generalized Markup 
Language), but simpler to use than SGML 


 

Documents have tags giving extra information about 
sections of the document


 
E.g.  <title> XML </title>  <slide> Introduction …</slide>


 

Extensible, unlike HTML


 
Users can add new tags, and separately specify how the tag 
should be handled for display
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XML Introduction (Cont.)


 
The ability to specify new tags, and to create nested tag 
structures make XML a great way to exchange data, not 
just documents.


 

Much of the use of XML has been in data exchange applications, not as a replacement for 
HTML


 

Tags make data (relatively) self-documenting （自描述）


 

E.g. 
<bank>

<account>  
<account_number> A-101     </account_number>
<branch_name>      Downtown </branch_name>
<balance>              500         </balance>

</account>
<depositor>

<account_number> A-101    </account_number>
<customer_name> Johnson </customer_name>

</depositor>
</bank>
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XML: Motivation


 
Data interchange is critical in today’s networked world


 
Examples:


 
Banking:  funds transfer



 
Order processing (especially inter-company orders)



 
Scientific data


 

Chemistry:  ChemML, …


 

Genetics:    BSML (Bio-Sequence Markup Language), …


 
Paper flow of information between organizations is being 
replaced by electronic flow of information


 

Each application area has its own set of standards for 
representing information


 

XML has become the basis for all new generation data 
interchange formats
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XML Motivation (Cont.)


 
Earlier generation formats were based on plain text with line 
headers indicating the meaning of fields


 
Similar in concept to email headers



 
Does not allow for nested structures, no standard “type” language



 
Tied too closely to low level document structure (lines, spaces, etc)



 
Each XML based standard defines what are valid elements, 
using


 
XML type specification languages to specify the syntax


 

DTD (Document Type Descriptors)


 

XML Schema


 
Plus textual descriptions of the semantics



 
XML allows new tags to be defined as required


 
However, this may be constrained by DTDs



 
A wide variety of tools is available for parsing, browsing and 
querying XML documents/data
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Comparison with Relational Data


 
Inefficient: tags, which in effect represent schema 
information, are repeated


 

Better than relational tuples as a data-exchange format


 
Unlike relational tuples, XML data is self-documenting 
due to presence of tags



 
Non-rigid format: tags can be added



 
Allows nested structures



 
Wide acceptance, not only in database systems, but also 
in browsers, tools, and applications
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Structure of XML Data


 
Tag（标签）

 
label for a section of data


 

Element（元素） section of data beginning with 
<tagname> and ending with matching </tagname>


 

Elements must be properly nested


 
Proper nesting


 
<account> … <balance>  …. </balance> </account> 



 
Improper nesting 


 
<account> … <balance>  …. </account> </balance> 



 
Formally:  every start tag must have a unique matching 
end tag, that is in the context of the same parent element.


 

Every document must have a single top-level element
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Example of Nested Elements
<bank-1> 

<customer>
<customer_name> Hayes </customer_name>

<customer_street> Main </customer_street>
<customer_city>     Harrison </customer_city>
<account>

<account_number> A-102 </account_number>
<branch_name>      Perryridge </branch_name>
<balance>               400 </balance>

</account>
<account>

…
</account>

</customer> 
. 
.

</bank-1>
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Motivation for Nesting


 
Nesting of data is useful in data transfer


 
Example:  elements representing customer_id, 
customer_name, and address nested within an order 
element


 

Nesting is not supported, or discouraged, in relational 
databases


 
With multiple orders, customer name and address are 
stored redundantly



 
normalization replaces nested structures in each order by 
foreign key into table storing customer name and address 
information



 
Nesting is supported in object-relational databases


 

But nesting is appropriate when transferring data


 
External application does not have direct access to data 
referenced by a foreign key
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Structure of XML Data (Cont.)


 
Mixture of text with sub-elements is legal in XML. 


 
Example:
<account>

This account is seldom used any more.
<account_number> A-102</account_number>
<branch_name> Perryridge</branch_name>
<balance>400 </balance> 

</account>


 
Useful for document markup, but discouraged for data 
representation
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Attributes（属性）


 
Elements can have attributes

<account acct-type = “checking” >
<account_number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>


 
Attributes are specified by  name=value pairs inside the 
starting tag of an element


 

An element may have several attributes, but each 
attribute name can only occur once

<account  acct-type = “checking” monthly-fee=“5”>
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Attributes vs. Subelements


 
Distinction between subelement and attribute


 
In the context of documents, attributes are part of markup, 
while subelement contents are part of the basic document 
contents



 
In the context of data representation, the difference is 
unclear and may be confusing


 
Same information can be represented in two ways


 

<account  account_number = “A-101”>  …. </account>


 

<account> 
<account_number>A-101</account_number> … 

</account>


 
Suggestion: use attributes for identifiers of elements, and 
use subelements for contents
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Namespaces（名字空间）


 
XML data has to be exchanged between organizations



 
Same tag name may have different meaning in different 
organizations, causing confusion on exchanged documents



 
Specifying a unique string as an element name avoids 
confusion



 
Better solution: use  unique-name:element-name



 
Avoid using long unique names all over document by using 
XML Namespaces
<bank xmlns:FB=‘http://www.FirstBank.com’> 

…
<FB:branch>

<FB:branchname>Downtown</FB:branchname>
<FB:branchcity>    Brooklyn   </FB:branchcity>

</FB:branch> 
…

</bank>

http://www.firstbank.com/


15

More on XML Syntax


 
Elements without subelements or text content can be 
abbreviated by ending the start tag with a  />  and 
deleting the end tag


 
<account  number=“A-101” branch=“Perryridge” 
balance=“200”/>


 

To store string data that may contain tags, without the 
tags being interpreted as subelements, use CDATA as 
below


 
<![CDATA[<account> … </account>]]>

Here, <account> and </account> are treated as just strings
CDATA stands for “character data”



16

XML Document Schema


 
Database schemas constrain what information can be stored, 
and the data types of stored values



 
XML documents are not required to have an associated 
schema



 
However, schemas are very important for XML data 
exchange


 
Otherwise, a site cannot automatically interpret data received 
from another site



 
Two mechanisms for specifying XML schema


 
Document Type Definition (DTD)


 

Widely used


 
XML Schema 


 

Newer, increasing use
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Document Type Definition (DTD)


 
The type of an XML document can be specified using 
a DTD


 

DTD constraints structure of XML data


 
What elements can occur



 
What attributes can/must an element have



 
What subelements can/must occur inside each element, 
and how many times.


 

DTD does not constrain data types


 
All values represented as strings in XML


 

DTD syntax


 
<!DOCTYPE document […]>



 
<!ELEMENT element (subelements-specification) >



 
<!ATTLIST   element (attributes)  >
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Element Specification in DTD


 

Subelements can be specified as


 

names of elements, or


 

#PCDATA (parsed character data), i.e., character strings


 

EMPTY (no subelements) or ANY (anything can be a subelement)


 

Example
<! ELEMENT depositor (customer_name account_number)>
<! ELEMENT customer_name (#PCDATA)>
<! ELEMENT account_number (#PCDATA)>



 

Subelement specification may have regular expressions
<!ELEMENT bank ( ( account | customer | depositor)+)>


 

Notation: 


 

“|” - alternatives


 

“+” - 1 or more occurrences


 

“*” - 0 or more occurrences


 

“?” – 0 or 1
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Bank DTD

<!DOCTYPE bank [
<!ELEMENT bank ( ( account | customer | depositor)+)>
<!ELEMENT account (account_number branch_name 
balance)>
<! ELEMENT customer(customer_name customer_street 
customer_city)>
<! ELEMENT depositor (customer_name 
account_number)>
<! ELEMENT account_number (#PCDATA)>
<! ELEMENT branch_name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer_name(#PCDATA)>
<! ELEMENT customer_street(#PCDATA)>
<! ELEMENT customer_city(#PCDATA)>

]>
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Attribute Specification in DTD


 
Attribute specification : for each attribute  


 
Name



 
Type of attribute 


 
CDATA



 
ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs) 


 

more on this later 


 
Whether  


 
mandatory (#REQUIRED)



 
has a default value (value), 



 
or neither (#IMPLIED)


 

Examples


 
<!ATTLIST account  acct-type CDATA “checking”>



 
<!ATTLIST customer

customer_id ID          # REQUIRED
accounts       IDREFS # REQUIRED   >
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IDs and IDREFs


 
An element can have at most one attribute of type ID


 

The ID attribute value of each element in an XML 
document must be distinct


 
Thus the ID attribute value is an object identifier


 

An attribute of type IDREF must contain the ID value 
of an element in the same document


 

An attribute of type IDREFS contains a set of (0 or 
more) ID values.  Each ID value must contain the ID 
value of an element in the same document
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Bank DTD with Attributes


 
Bank DTD with ID and IDREF attribute types.

<!DOCTYPE bank-2[
<!ELEMENT account (branch, balance)>
<!ATTLIST account

account_number ID          # REQUIRED
owners                IDREFS # REQUIRED>

<!ELEMENT customer(customer_name, 
customer_street, customer_city)>

<!ATTLIST customer
customer_id ID          # REQUIRED
accounts            IDREFS # REQUIRED>

… declarations for branch, balance, customer_name, 
customer_street and customer_city 

]>
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XML data with ID and IDREF attributes

<bank-2>
<account account_number=“A-401” owners=“C100 C102”>

<branch_name> Downtown </branch_name>
<balance>          500 </balance>

</account>
<customer customer_id=“C100” accounts=“A-401”>

<customer_name>Joe         </customer_name>
<customer_street> Monroe  </customer_street>
<customer_city>     Madison</customer_city>

</customer>
<customer customer_id=“C102” accounts=“A-401 A-402”>

<customer_name> Mary     </customer_name>
<customer_street> Erin       </customer_street>
<customer_city>     Newark </customer_city>

</customer>
</bank-2>
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Limitations of DTDs


 
No typing of text elements and attributes


 
All values are strings, no integers, reals, etc.


 

Difficult to specify unordered sets of subelements


 
Order is usually irrelevant in databases (unlike in the 
document-layout environment from which XML evolved)



 
(A | B)* allows specification of an unordered set, but


 
Cannot ensure that each of A and B occurs only once


 

IDs and IDREFs are untyped


 
The owners attribute of an account may contain a 
reference to another account, which is meaningless


 
owners attribute should ideally be constrained to refer to customer 
elements
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XML Schema


 
XML Schema is a more sophisticated schema language 
which addresses the drawbacks of DTDs.  Supports


 
Typing of values


 

E.g. integer, string, decimal, boolean, date, etc


 

Also, constraints on min/max values


 
User-defined, complex types



 
Many more features, including


 

uniqueness and foreign key constraints, inheritance 


 
XML Schema is itself specified in XML syntax, unlike 
DTDs


 
More-standard representation, but verbose



 
XML Scheme is integrated with namespaces 



 
BUT:  XML Schema is significantly more complicated than 
DTDs.
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XML Schema Version of Bank DTD
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=“bank” type=“BankType”/>
<xs:element name=“account”> 

<xs:complexType> 
<xs:sequence> 

<xs:element name=“account_number” type=“xs:string”/> 
<xs:element name=“branch_name” type=“xs:string”/> 
<xs:element name=“balance” type=“xs:decimal”/> 

</xs:squence> 
</xs:complexType>

</xs:element>
….. definitions of customer and depositor ….
<xs:complexType name=“BankType”> 

<xs:squence>
<xs:element ref=“account” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
</xs:schema>

http://www.w3.org/2001/XMLSchema
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XML Schema Version of Bank DTD


 
Choice of “xs:” was ours -- any other namespace 
prefix could be chosen


 

Element “bank” has type “BankType”, which is 
defined separately


 
xs:complexType is used later to create the named 
complex type “BankType”


 

Element “account” has its type defined in-line
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More features of XML Schema


 
Attributes specified by xs:attribute tag:


 
<xs:attribute name = “account_number”/>



 
adding the attribute use = “required” means value must be specified



 
Key constraint: “account numbers form a key for account elements under 
the root bank element:

<xs:key name = “accountKey”>
<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:key>


 
Foreign key constraint from depositor to account:

<xs:keyref name = “depositorAccountKey” refer=“accountKey”>
<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:keyref>
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Querying and Transforming XML Data


 
Translation of information from one XML schema to 
another


 

Querying on XML data 


 
Above two are closely related, and handled by the same 
tools


 

Standard XML querying/translation languages


 
XPath


 
Simple language consisting of path expressions



 
XSLT


 
Simple language designed for translation from XML to XML and 
XML to HTML



 
XQuery


 
An XML query language with a rich set of features
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Tree Model of XML Data


 
Query and transformation languages are based on a tree 
model of XML data


 

An XML document is modeled as a tree, with nodes 
corresponding to elements and attributes


 
Element nodes have child nodes, which can be attributes or 
subelements



 
Text in an element is modeled as a text node child of the 
element



 
Children of a node are ordered according to their order in the 
XML document



 
Element and attribute nodes (except for the root node) have a 
single parent, which is an element node



 
The root node has a single child, which is the root element of 
the document
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XPath


 
XPath is used to address (select) parts of documents using 
path expressions



 
A path expression is a sequence of steps separated by “/”


 
Think of file names in a directory hierarchy



 
Result of path expression:  set of values that along with 
their containing elements/attributes match the specified 
path 



 
E.g.       /bank-2/customer/customer_name evaluated on 
the bank-2 data we saw earlier returns 
<customer_name>Joe</customer_name>
<customer_name>Mary</customer_name>



 
E.g.       /bank-2/customer/customer_name/text( )

returns the same names, but without the enclosing tags
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XPath (Cont.)


 
The initial “/” denotes root of the document (above the top- 
level tag)



 
Path expressions are evaluated left to right


 
Each step operates on the set of instances produced by the 
previous step



 
Selection predicates may follow any step in a path, in [ ]


 
E.g.    /bank-2/account[balance > 400] 


 

returns account elements with a balance value greater than 400


 

/bank-2/account[balance]  returns account elements containing a 
balance subelement



 
Attributes are accessed using “@”


 
E.g.  /bank-2/account[balance > 400]/@account_number


 

returns the account numbers of accounts with balance > 400


 
IDREF attributes are not dereferenced automatically (more on 
this later)
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Functions in XPath


 
XPath provides several functions


 
The function count() at the end of a path counts the number of 
elements in the set generated by the path


 

E.g. /bank-2/account[count(./customer) > 2] 


 

Returns accounts with > 2 customers


 
Also function for testing position (1, 2, ..) of node w.r.t. 
siblings



 
Boolean connectives and and or and function not() can be 
used in predicates



 
IDREFs can be referenced using function id()


 
id() can also be applied to sets of references such as IDREFS 
and even to strings containing multiple references separated 
by blanks



 
E.g.  /bank-2/account/id(@owner)


 

returns all id numbers of customers referred to from the owners 
attribute of account elements.
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More XPath Features


 
Operator “|” used to implement union 


 
E.g.  /bank-2/account/id(@owner) | /bank- 
2/loan/id(@borrower)


 
Gives customers with either accounts or loans



 
However, “|” cannot be nested inside other operators.


 

“//” can be used to skip multiple levels of nodes 


 
E.g.  /bank-2//customer_name 


 
finds any customer_name element anywhere under the /bank-2 
element, regardless of the element in which it is contained.


 

A step in the path can go to parents, siblings, 
ancestors and descendants  of the nodes generated 
by the previous step, not just to the children


 
“//”, described above, is a short from for specifying 
“all descendants”



 
“..” specifies the parent.


 

doc(name) returns the root of a named document
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XQuery


 
XQuery is a general purpose query language for XML data 



 
Currently being standardized by the World Wide Web 
Consortium (W3C)


 
The textbook description is based on a January 2005 draft of 
the standard.  The final version may differ, but major features 
likely to stay unchanged.



 
XQuery is derived from the Quilt query language, which 
itself borrows from SQL, XQL and XML-QL



 
XQuery uses a  

for … let … where … order by …result … 
(FLWOR) syntax 

for  SQL from 
where  SQL where 
order by  SQL order by
result  SQL select 
let allows temporary variables, and has no equivalent in 

SQL
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FLWOR Syntax in XQuery


 
For clause uses XPath expressions, and variable in for clause 
ranges over values in the set returned by XPath



 
Simple FLWOR expression in XQuery


 
find all accounts with balance > 400, with each result enclosed in 
an <account_number> .. </account_number> tag 

for $x in /bank-2/account 
let       $acctno := $x/@account_number 
where $x/balance > 400 
return <account_number> { $acctno } </account_number>



 
Items in the return clause are XML text unless enclosed in {}, in 
which case they are evaluated



 
Let clause not really needed in this query, and selection can be 
done In XPath.  Query can be written as:

for $x in /bank-2/account[balance>400] 
return <account_number> { $x/@account_number }                  

</account_number>
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Joins（连接）


 
Joins are specified in a manner very similar to SQL 
for $a  in /bank/account,

$c  in /bank/customer,
$d  in /bank/depositor

where   $a/account_number = $d/account_number 
and $c/customer_name = $d/customer_name

return <cust_acct> { $c $a } </cust_acct>


 
The same query can be expressed with the selections 
specified as XPath selections:

for $a in /bank/account 
$c in /bank/customer 
$d in /bank/depositor[ 

account_number = $a/account_number and 
customer_name = $c/customer_name]

return <cust_acct> { $c $a } </cust_acct>
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Nested Queries（嵌套查询）


 
The following query converts data from the flat structure 
for bank information into the nested structure used in 
bank-1

<bank-1> {
for $c in /bank/customer
return
<customer>

{ $c/* }
{ for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number=$d/account_number]
return $a }
</customer>

} </bank-1>


 
$c/* denotes all the children of the node to which $c is 
bound, without the enclosing top-level tag


 

$c/text() gives text content of an element without any 
subelements / tags
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Sorting（排序） in XQuery


 

The order by clause can be used at the end of any expression.  E.g. to return customers sorted by 
name 

for $c in /bank/customer 
order by $c/customer_name 
return <customer> { $c/* } </customer>



 

Use order by $c/customer_name to sort in descending order


 

Can sort at multiple levels of nesting (sort  by customer_name, and by account_number within 
each customer)

<bank-1> { 
for $c in /bank/customer   
order by $c/customer_name
return 

<customer> 
{ $c/* }

{ for $d in /bank/depositor[customer_name=$c/customer_name], 
$a in /bank/account[account_number=$d/account_number] }

order by $a/account_number
return <account> $a/* </account> 

</customer>
} </bank-1>
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Functions, Types and Other XQuery Features


 
User defined functions with the type system of XMLSchema 
function balances(xs:string $c) returns list(xs:decimal*) { 

for $d in /bank/depositor[customer_name = $c], 
$a in /bank/account[account_number = 

$d/account_number] 
return $a/balance

}


 
Types are optional for function parameters and return values



 
The * (as in decimal*) indicates a sequence of values of that 
type



 
Universal and existential quantification in where clause 
predicates


 
some $e in path satisfies P



 
every $e in path satisfies P



 
XQuery also supports If-then-else clauses
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XSLT


 
A stylesheet stores formatting options for a document, 
usually separately from document


 
E.g. an HTML style sheet may specify font colors and sizes 
for headings, etc.



 
The XML Stylesheet Language (XSL) was originally 
designed for generating HTML from XML



 
XSLT is a general-purpose transformation language 


 
Can translate XML to XML, and XML to HTML



 
XSLT transformations are expressed using rules called 
templates(模板）



 
Templates combine selection using XPath with construction of 
results
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XSLT Templates


 
Example of XSLT template with   match and  select part 

<xsl:template match=“/bank-2/customer”>
<xsl:value-of select=“customer_name”/>

</xsl:template>
<xsl:template match=“*”/>



 
The match attribute of xsl:template specifies a pattern in XPath



 
Elements in the XML document matching the pattern are 
processed by the actions within the xsl:template element


 
xsl:value-of selects (outputs) specified values (here, 
customer_name)



 
For elements that do not match any template 


 
Attributes and text contents are output as is



 
Templates are recursively applied on subelements



 
The  <xsl:template match=“*”/> template matches all 
elements that do not match any other template


 
Used to ensure that their contents do not get output.



 
If an element matches several templates, only one is used based 
on a complex priority scheme/user-defined priorities
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Creating XML Output


 
Any text or tag in the XSL stylesheet that is not in the 
xsl namespace is output as is


 

E.g. to wrap results in new XML elements.
<xsl:template match=“/bank-2/customer”>

<customer>
<xsl:value-of select=“customer_name”/>
</customer>

</xsl;template>
<xsl:template match=“*”/>



 
Example output: 

<customer> Joe   </customer> 
<customer> Mary </customer>
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Creating XML Output (Cont.)


 
Note: Cannot directly insert a xsl:value-of tag inside 
another tag


 
E.g. cannot create an attribute for <customer> in the 
previous example by directly using xsl:value-of



 
XSLT provides a construct  xsl:attribute to handle this 
situation


 
xsl:attribute adds attribute to the preceding element



 
E.g.  <customer> 

<xsl:attribute name=“customer_id”>
<xsl:value-of select = “customer_id”/> 

</xsl:attribute>
</customer>

results in output of the form   
<customer  customer_id=“….”> ….


 

xsl:element is used to create output elements with 
computed names
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Structural Recursion（结构递归）


 

Template action can apply templates recursively to the contents of a 
matched element

<xsl:template match=“/bank”>
<customers>
<xsl:template apply-templates/>
</customers >

</xsl:template>
<xsl:template match=“/customer”>

<customer>
<xsl:value-of select=“customer_name”/>
</customer>

</xsl:template>
<xsl:template match=“*”/>



 

Example output: 
<customers> 

<customer> John </customer> 
<customer> Mary </customer> 

</customers>
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Joins in XSLT


 

XSLT keys allow elements to be looked up (indexed) by values of 
subelements or attributes


 

Keys must be declared (with a name) and, the key() function can then 
be used for lookup.  E.g. 

<xsl:key name=“acctno” match=“account” 
use=“account_number”/>

<xsl:value-of select=key(“acctno”, “A-101”)


 

Keys permit (some) joins to be expressed in XSLT
<xsl:key name=“acctno” match=“account” use=“account_number”/>
<xsl:key name=“custno” match=“customer” use=“customer_name”/>
<xsl:template match=“depositor”>

<cust_acct>
<xsl:value-of select=key(“custno”, “customer_name”)/>
<xsl:value-of select=key(“acctno”, “account_number”)/>
</cust_acct>

</xsl:template>
<xsl:template match=“*”/>
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Sorting in XSLT


 
Using an xsl:sort directive inside a template causes all 
elements matching the template to be sorted 


 
Sorting is done before applying other templates

<xsl:template match=“/bank”> 
<xsl:apply-templates select=“customer”> 
<xsl:sort select=“customer_name”/> 
</xsl:apply-templates> 

</xsl:template> 
<xsl:template match=“customer”> 

<customer> 
<xsl:value-of select=“customer_name”/> 
<xsl:value-of select=“customer_street”/> 
<xsl:value-of select=“customer_city”/> 

</customer> 
<xsl:template> 
<xsl:template match=“*”/>
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Application Program Interface


 
There are two standard application program interfaces to 
XML data:


 
SAX (Simple API for XML)


 
Based on parser model, user provides event handlers for parsing 
events 


 

E.g. start of element, end of element


 

Not suitable for database applications


 
DOM (Document Object Model)


 
XML data is parsed into a tree representation 



 
Variety of functions provided for traversing the DOM tree



 
E.g.:  Java DOM API provides Node class with methods 

getParentNode( ), getFirstChild( ), getNextSibling( ) 
getAttribute( ), getData( ) (for text node) 
getElementsByTagName( ), …



 
Also provides functions for updating DOM tree
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Storage of XML Data


 
XML data can be stored in 


 
Non-relational data stores


 
Flat files


 

Natural for storing XML


 

But has all problems discussed in Chapter 1 (no concurrency, no 
recovery, …)



 
XML database


 

Database built specifically for storing XML data, supporting 
DOM model and declarative querying



 

Currently no commercial-grade systems


 
Relational databases


 
Data must be translated into relational form



 
Advantage:  mature database systems



 
Disadvantages: overhead of translating data and queries
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Storage of XML in Relational 
Databases


 
Alternatives:


 
String Representation



 
Tree Representation



 
Map to relations
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String Representation（字符表示法）


 
Store each top level element as a string field of a tuple in 
a relational database


 
Use a single relation to store all elements, or



 
Use a separate relation for each top-level element type


 
E.g.  account, customer, depositor relations


 

Each with a string-valued attribute to store the element


 

Indexing:


 
Store values of subelements/attributes to be indexed as extra 
fields of the relation, and build indices on these fields


 
E.g. customer_name or account_number



 
Some database systems support function indices, which use 
the result of a function as the key value. 


 
The function should return the value of the required 
subelement/attribute
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String Representation (Cont.)


 
Benefits: 


 
Can store any XML data even without DTD



 
As long as there are many top-level elements in a 
document, strings are small compared to full document


 
Allows fast access to individual elements.


 

Drawback: Need to parse strings to access values 
inside the elements


 
Parsing is slow.
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Tree Representation（树表示法）



 
Tree representation:  model XML data as tree and store 
using relations 

nodes(id, type, label, value) 
child  (child_id, parent_id)



 
Each element/attribute is given a unique identifier



 
Type indicates element/attribute



 
Label specifies the tag name of the element/name of attribute



 
Value is the text value of the element/attribute



 
The relation child notes the parent-child relationships in the 
tree


 
Can add an extra attribute to child to record ordering of children

bank (id:1)

customer (id:2) account (id: 5)

customer_name 
(id: 3)

account_number 
(id: 7)
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Tree Representation (Cont.)


 
Benefit: Can store any XML data, even without DTD


 

Drawbacks:


 
Data is broken up into too many pieces, increasing space 
overheads



 
Even simple queries require a large number of joins, 
which can be slow
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Mapping XML Data to Relations（映射到关系）



 
Relation created for each element type whose schema is 
known:


 
An id attribute to store a unique id for each element



 
A relation attribute corresponding to each element attribute



 
A parent_id attribute to keep track of parent element


 

As in the tree representation


 

Position information (ith child) can be store too



 
All subelements that occur only once can become relation 
attributes


 
For text-valued subelements, store the text as attribute value



 
For complex subelements, can store the id of the subelement



 
Subelements that can occur multiple times represented in a 
separate table


 
Similar to handling of multivalued attributes when converting 
ER diagrams to tables
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Storing XML Data in Relational 
Systems


 
Publishing （发布） : process of converting relational 
data to an XML format


 

Shredding （分解） : process of converting an XML 
document into a set of tuples to be inserted into one or 
more relations


 

XML-enabled database systems support automated 
publishing and shredding


 

Some systems offer native storage of XML data using 
the xml data type.  Special internal data structures and 
indices are used for efficiency
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SQL/XML


 
New standard SQL extension that allows creation of nested 
XML output


 
Each output tuple is mapped to an XML element row

<bank>
<account>

<row>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</row>
…. more rows if there are more output tuples …
</account>

</bank>



58

SQL Extensions


 
xmlelement creates XML elements


 

xmlattributes creates attributes

select xmlelement (name “account,
xmlattributes (account_number as 

account_number),
xmlelement (name “branch_name”, 

branch_name),
xmlelement (name “balance”, balance))

from account
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Web Services


 
The Simple Object Access Protocol (SOAP) standard 
（简单对象访问协议）


 
Invocation of procedures across applications with distinct 
databases



 
XML used to represent procedure input and output


 

A Web service is a site providing a collection of SOAP 
procedures


 
Described using the Web Services Description Language 
(WSDL)



 
Directories of Web services are described using the 
Universal Description, Discovery, and Integration (UDDI) 
standard（通用描述、发现和集成标准）
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