
1

XML
(Extensible Markup Language)

扩展标记语言

2

XML


Structure of XML Data



XML Document Schema


Querying and Transformation



Application Program Interfaces to XML


Storage of XML Data



XML Applications

3

Introduction


XML: Extensible Markup Language



Defined by the WWW Consortium (W3C)


Derived from SGML (Standard Generalized Markup
Language), but simpler to use than SGML



Documents have tags giving extra information about
sections of the document


E.g. <title> XML </title> <slide> Introduction …</slide>



Extensible, unlike HTML


Users can add new tags, and separately specify how the tag
should be handled for display

4

XML Introduction (Cont.)


The ability to specify new tags, and to create nested tag
structures make XML a great way to exchange data, not
just documents.


Much of the use of XML has been in data exchange applications, not as a replacement for
HTML



Tags make data (relatively) self-documenting （自描述）


E.g.
<bank>

<account>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</account>
<depositor>

<account_number> A-101 </account_number>
<customer_name> Johnson </customer_name>

</depositor>
</bank>

5

XML: Motivation


Data interchange is critical in today’s networked world


Examples:


Banking: funds transfer



Order processing (especially inter-company orders)



Scientific data


Chemistry: ChemML, …


Genetics: BSML (Bio-Sequence Markup Language), …


Paper flow of information between organizations is being
replaced by electronic flow of information



Each application area has its own set of standards for
representing information



XML has become the basis for all new generation data
interchange formats

6

XML Motivation (Cont.)


Earlier generation formats were based on plain text with line
headers indicating the meaning of fields


Similar in concept to email headers



Does not allow for nested structures, no standard “type” language



Tied too closely to low level document structure (lines, spaces, etc)



Each XML based standard defines what are valid elements,
using


XML type specification languages to specify the syntax


DTD (Document Type Descriptors)


XML Schema


Plus textual descriptions of the semantics



XML allows new tags to be defined as required


However, this may be constrained by DTDs



A wide variety of tools is available for parsing, browsing and
querying XML documents/data

7

Comparison with Relational Data


Inefficient: tags, which in effect represent schema
information, are repeated



Better than relational tuples as a data-exchange format


Unlike relational tuples, XML data is self-documenting
due to presence of tags



Non-rigid format: tags can be added



Allows nested structures



Wide acceptance, not only in database systems, but also
in browsers, tools, and applications

8

Structure of XML Data


Tag（标签）

label for a section of data



Element（元素） section of data beginning with
<tagname> and ending with matching </tagname>



Elements must be properly nested


Proper nesting


<account> … <balance> …. </balance> </account>



Improper nesting


<account> … <balance> …. </account> </balance>



Formally: every start tag must have a unique matching
end tag, that is in the context of the same parent element.



Every document must have a single top-level element

9

Example of Nested Elements
<bank-1>

<customer>
<customer_name> Hayes </customer_name>

<customer_street> Main </customer_street>
<customer_city> Harrison </customer_city>
<account>

<account_number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>
<account>

…
</account>

</customer>
.
.

</bank-1>

10

Motivation for Nesting


Nesting of data is useful in data transfer


Example: elements representing customer_id,
customer_name, and address nested within an order
element



Nesting is not supported, or discouraged, in relational
databases


With multiple orders, customer name and address are
stored redundantly



normalization replaces nested structures in each order by
foreign key into table storing customer name and address
information



Nesting is supported in object-relational databases



But nesting is appropriate when transferring data


External application does not have direct access to data
referenced by a foreign key

11

Structure of XML Data (Cont.)


Mixture of text with sub-elements is legal in XML.


Example:
<account>

This account is seldom used any more.
<account_number> A-102</account_number>
<branch_name> Perryridge</branch_name>
<balance>400 </balance>

</account>


Useful for document markup, but discouraged for data
representation

12

Attributes（属性）


Elements can have attributes

<account acct-type = “checking” >
<account_number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>


Attributes are specified by name=value pairs inside the
starting tag of an element



An element may have several attributes, but each
attribute name can only occur once

<account acct-type = “checking” monthly-fee=“5”>

13

Attributes vs. Subelements


Distinction between subelement and attribute


In the context of documents, attributes are part of markup,
while subelement contents are part of the basic document
contents



In the context of data representation, the difference is
unclear and may be confusing


Same information can be represented in two ways


<account account_number = “A-101”> …. </account>


<account>
<account_number>A-101</account_number> …

</account>


Suggestion: use attributes for identifiers of elements, and
use subelements for contents

14

Namespaces（名字空间）


XML data has to be exchanged between organizations



Same tag name may have different meaning in different
organizations, causing confusion on exchanged documents



Specifying a unique string as an element name avoids
confusion



Better solution: use unique-name:element-name



Avoid using long unique names all over document by using
XML Namespaces
<bank xmlns:FB=‘http://www.FirstBank.com’>

…
<FB:branch>

<FB:branchname>Downtown</FB:branchname>
<FB:branchcity> Brooklyn </FB:branchcity>

</FB:branch>
…

</bank>

http://www.firstbank.com/

15

More on XML Syntax


Elements without subelements or text content can be
abbreviated by ending the start tag with a /> and
deleting the end tag


<account number=“A-101” branch=“Perryridge”
balance=“200”/>



To store string data that may contain tags, without the
tags being interpreted as subelements, use CDATA as
below


<![CDATA[<account> … </account>]]>

Here, <account> and </account> are treated as just strings
CDATA stands for “character data”

16

XML Document Schema


Database schemas constrain what information can be stored,
and the data types of stored values



XML documents are not required to have an associated
schema



However, schemas are very important for XML data
exchange


Otherwise, a site cannot automatically interpret data received
from another site



Two mechanisms for specifying XML schema


Document Type Definition (DTD)


Widely used


XML Schema


Newer, increasing use

17

Document Type Definition (DTD)


The type of an XML document can be specified using
a DTD



DTD constraints structure of XML data


What elements can occur



What attributes can/must an element have



What subelements can/must occur inside each element,
and how many times.



DTD does not constrain data types


All values represented as strings in XML



DTD syntax


<!DOCTYPE document […]>



<!ELEMENT element (subelements-specification) >



<!ATTLIST element (attributes) >

18

Element Specification in DTD


Subelements can be specified as


names of elements, or


#PCDATA (parsed character data), i.e., character strings


EMPTY (no subelements) or ANY (anything can be a subelement)


Example
<! ELEMENT depositor (customer_name account_number)>
<! ELEMENT customer_name (#PCDATA)>
<! ELEMENT account_number (#PCDATA)>



Subelement specification may have regular expressions
<!ELEMENT bank ((account | customer | depositor)+)>


Notation:


“|” - alternatives


“+” - 1 or more occurrences


“*” - 0 or more occurrences


“?” – 0 or 1

19

Bank DTD

<!DOCTYPE bank [
<!ELEMENT bank ((account | customer | depositor)+)>
<!ELEMENT account (account_number branch_name
balance)>
<! ELEMENT customer(customer_name customer_street
customer_city)>
<! ELEMENT depositor (customer_name
account_number)>
<! ELEMENT account_number (#PCDATA)>
<! ELEMENT branch_name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer_name(#PCDATA)>
<! ELEMENT customer_street(#PCDATA)>
<! ELEMENT customer_city(#PCDATA)>

]>

20

Attribute Specification in DTD


Attribute specification : for each attribute


Name



Type of attribute


CDATA



ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)


more on this later


Whether


mandatory (#REQUIRED)



has a default value (value),



or neither (#IMPLIED)



Examples


<!ATTLIST account acct-type CDATA “checking”>



<!ATTLIST customer

customer_id ID # REQUIRED
accounts IDREFS # REQUIRED >

21

IDs and IDREFs


An element can have at most one attribute of type ID



The ID attribute value of each element in an XML
document must be distinct


Thus the ID attribute value is an object identifier



An attribute of type IDREF must contain the ID value
of an element in the same document



An attribute of type IDREFS contains a set of (0 or
more) ID values. Each ID value must contain the ID
value of an element in the same document

22

Bank DTD with Attributes


Bank DTD with ID and IDREF attribute types.

<!DOCTYPE bank-2[
<!ELEMENT account (branch, balance)>
<!ATTLIST account

account_number ID # REQUIRED
owners IDREFS # REQUIRED>

<!ELEMENT customer(customer_name,
customer_street, customer_city)>

<!ATTLIST customer
customer_id ID # REQUIRED
accounts IDREFS # REQUIRED>

… declarations for branch, balance, customer_name,
customer_street and customer_city

]>

23

XML data with ID and IDREF attributes

<bank-2>
<account account_number=“A-401” owners=“C100 C102”>

<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</account>
<customer customer_id=“C100” accounts=“A-401”>

<customer_name>Joe </customer_name>
<customer_street> Monroe </customer_street>
<customer_city> Madison</customer_city>

</customer>
<customer customer_id=“C102” accounts=“A-401 A-402”>

<customer_name> Mary </customer_name>
<customer_street> Erin </customer_street>
<customer_city> Newark </customer_city>

</customer>
</bank-2>

24

Limitations of DTDs


No typing of text elements and attributes


All values are strings, no integers, reals, etc.



Difficult to specify unordered sets of subelements


Order is usually irrelevant in databases (unlike in the
document-layout environment from which XML evolved)



(A | B)* allows specification of an unordered set, but


Cannot ensure that each of A and B occurs only once



IDs and IDREFs are untyped


The owners attribute of an account may contain a
reference to another account, which is meaningless


owners attribute should ideally be constrained to refer to customer
elements

25

XML Schema


XML Schema is a more sophisticated schema language
which addresses the drawbacks of DTDs. Supports


Typing of values


E.g. integer, string, decimal, boolean, date, etc


Also, constraints on min/max values


User-defined, complex types



Many more features, including


uniqueness and foreign key constraints, inheritance


XML Schema is itself specified in XML syntax, unlike
DTDs


More-standard representation, but verbose



XML Scheme is integrated with namespaces



BUT: XML Schema is significantly more complicated than
DTDs.

26

XML Schema Version of Bank DTD
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=“bank” type=“BankType”/>
<xs:element name=“account”>

<xs:complexType>
<xs:sequence>

<xs:element name=“account_number” type=“xs:string”/>
<xs:element name=“branch_name” type=“xs:string”/>
<xs:element name=“balance” type=“xs:decimal”/>

</xs:squence>
</xs:complexType>

</xs:element>
….. definitions of customer and depositor ….
<xs:complexType name=“BankType”>

<xs:squence>
<xs:element ref=“account” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
</xs:schema>

http://www.w3.org/2001/XMLSchema

27

XML Schema Version of Bank DTD


Choice of “xs:” was ours -- any other namespace
prefix could be chosen



Element “bank” has type “BankType”, which is
defined separately


xs:complexType is used later to create the named
complex type “BankType”



Element “account” has its type defined in-line

28

More features of XML Schema


Attributes specified by xs:attribute tag:


<xs:attribute name = “account_number”/>



adding the attribute use = “required” means value must be specified



Key constraint: “account numbers form a key for account elements under
the root bank element:

<xs:key name = “accountKey”>
<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:key>


Foreign key constraint from depositor to account:

<xs:keyref name = “depositorAccountKey” refer=“accountKey”>
<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:keyref>

29

Querying and Transforming XML Data


Translation of information from one XML schema to
another



Querying on XML data


Above two are closely related, and handled by the same
tools



Standard XML querying/translation languages


XPath


Simple language consisting of path expressions



XSLT


Simple language designed for translation from XML to XML and
XML to HTML



XQuery


An XML query language with a rich set of features

30

Tree Model of XML Data


Query and transformation languages are based on a tree
model of XML data



An XML document is modeled as a tree, with nodes
corresponding to elements and attributes


Element nodes have child nodes, which can be attributes or
subelements



Text in an element is modeled as a text node child of the
element



Children of a node are ordered according to their order in the
XML document



Element and attribute nodes (except for the root node) have a
single parent, which is an element node



The root node has a single child, which is the root element of
the document

31

XPath


XPath is used to address (select) parts of documents using
path expressions



A path expression is a sequence of steps separated by “/”


Think of file names in a directory hierarchy



Result of path expression: set of values that along with
their containing elements/attributes match the specified
path



E.g. /bank-2/customer/customer_name evaluated on
the bank-2 data we saw earlier returns
<customer_name>Joe</customer_name>
<customer_name>Mary</customer_name>



E.g. /bank-2/customer/customer_name/text()

returns the same names, but without the enclosing tags

32

XPath (Cont.)


The initial “/” denotes root of the document (above the top-
level tag)



Path expressions are evaluated left to right


Each step operates on the set of instances produced by the
previous step



Selection predicates may follow any step in a path, in []


E.g. /bank-2/account[balance > 400]


returns account elements with a balance value greater than 400


/bank-2/account[balance] returns account elements containing a
balance subelement



Attributes are accessed using “@”


E.g. /bank-2/account[balance > 400]/@account_number


returns the account numbers of accounts with balance > 400


IDREF attributes are not dereferenced automatically (more on
this later)

33

Functions in XPath


XPath provides several functions


The function count() at the end of a path counts the number of
elements in the set generated by the path


E.g. /bank-2/account[count(./customer) > 2]


Returns accounts with > 2 customers


Also function for testing position (1, 2, ..) of node w.r.t.
siblings



Boolean connectives and and or and function not() can be
used in predicates



IDREFs can be referenced using function id()


id() can also be applied to sets of references such as IDREFS
and even to strings containing multiple references separated
by blanks



E.g. /bank-2/account/id(@owner)


returns all id numbers of customers referred to from the owners
attribute of account elements.

34

More XPath Features


Operator “|” used to implement union


E.g. /bank-2/account/id(@owner) | /bank-
2/loan/id(@borrower)


Gives customers with either accounts or loans



However, “|” cannot be nested inside other operators.



“//” can be used to skip multiple levels of nodes


E.g. /bank-2//customer_name


finds any customer_name element anywhere under the /bank-2
element, regardless of the element in which it is contained.



A step in the path can go to parents, siblings,
ancestors and descendants of the nodes generated
by the previous step, not just to the children


“//”, described above, is a short from for specifying
“all descendants”



“..” specifies the parent.



doc(name) returns the root of a named document

35

XQuery


XQuery is a general purpose query language for XML data



Currently being standardized by the World Wide Web
Consortium (W3C)


The textbook description is based on a January 2005 draft of
the standard. The final version may differ, but major features
likely to stay unchanged.



XQuery is derived from the Quilt query language, which
itself borrows from SQL, XQL and XML-QL



XQuery uses a

for … let … where … order by …result …
(FLWOR) syntax

for  SQL from
where  SQL where
order by  SQL order by
result  SQL select
let allows temporary variables, and has no equivalent in

SQL

36

FLWOR Syntax in XQuery


For clause uses XPath expressions, and variable in for clause
ranges over values in the set returned by XPath



Simple FLWOR expression in XQuery


find all accounts with balance > 400, with each result enclosed in
an <account_number> .. </account_number> tag

for $x in /bank-2/account
let $acctno := $x/@account_number
where $x/balance > 400
return <account_number> { $acctno } </account_number>



Items in the return clause are XML text unless enclosed in {}, in
which case they are evaluated



Let clause not really needed in this query, and selection can be
done In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]
return <account_number> { $x/@account_number }

</account_number>

37

Joins（连接）


Joins are specified in a manner very similar to SQL
for $a in /bank/account,

$c in /bank/customer,
$d in /bank/depositor

where $a/account_number = $d/account_number
and $c/customer_name = $d/customer_name

return <cust_acct> { $c $a } </cust_acct>


The same query can be expressed with the selections
specified as XPath selections:

for $a in /bank/account
$c in /bank/customer
$d in /bank/depositor[

account_number = $a/account_number and
customer_name = $c/customer_name]

return <cust_acct> { $c $a } </cust_acct>

38

Nested Queries（嵌套查询）


The following query converts data from the flat structure
for bank information into the nested structure used in
bank-1

<bank-1> {
for $c in /bank/customer
return
<customer>

{ $c/* }
{ for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number=$d/account_number]
return $a }
</customer>

} </bank-1>


$c/* denotes all the children of the node to which $c is
bound, without the enclosing top-level tag



$c/text() gives text content of an element without any
subelements / tags

39

Sorting（排序） in XQuery


The order by clause can be used at the end of any expression. E.g. to return customers sorted by
name

for $c in /bank/customer
order by $c/customer_name
return <customer> { $c/* } </customer>



Use order by $c/customer_name to sort in descending order


Can sort at multiple levels of nesting (sort by customer_name, and by account_number within
each customer)

<bank-1> {
for $c in /bank/customer
order by $c/customer_name
return

<customer>
{ $c/* }

{ for $d in /bank/depositor[customer_name=$c/customer_name],
$a in /bank/account[account_number=$d/account_number] }

order by $a/account_number
return <account> $a/* </account>

</customer>
} </bank-1>

40

Functions, Types and Other XQuery Features


User defined functions with the type system of XMLSchema
function balances(xs:string $c) returns list(xs:decimal*) {

for $d in /bank/depositor[customer_name = $c],
$a in /bank/account[account_number =

$d/account_number]
return $a/balance

}


Types are optional for function parameters and return values



The * (as in decimal*) indicates a sequence of values of that
type



Universal and existential quantification in where clause
predicates


some $e in path satisfies P



every $e in path satisfies P



XQuery also supports If-then-else clauses

41

XSLT


A stylesheet stores formatting options for a document,
usually separately from document


E.g. an HTML style sheet may specify font colors and sizes
for headings, etc.



The XML Stylesheet Language (XSL) was originally
designed for generating HTML from XML



XSLT is a general-purpose transformation language


Can translate XML to XML, and XML to HTML



XSLT transformations are expressed using rules called
templates(模板）



Templates combine selection using XPath with construction of
results

42

XSLT Templates


Example of XSLT template with match and select part

<xsl:template match=“/bank-2/customer”>
<xsl:value-of select=“customer_name”/>

</xsl:template>
<xsl:template match=“*”/>



The match attribute of xsl:template specifies a pattern in XPath



Elements in the XML document matching the pattern are
processed by the actions within the xsl:template element


xsl:value-of selects (outputs) specified values (here,
customer_name)



For elements that do not match any template


Attributes and text contents are output as is



Templates are recursively applied on subelements



The <xsl:template match=“*”/> template matches all
elements that do not match any other template


Used to ensure that their contents do not get output.



If an element matches several templates, only one is used based
on a complex priority scheme/user-defined priorities

43

Creating XML Output


Any text or tag in the XSL stylesheet that is not in the
xsl namespace is output as is



E.g. to wrap results in new XML elements.
<xsl:template match=“/bank-2/customer”>

<customer>
<xsl:value-of select=“customer_name”/>
</customer>

</xsl;template>
<xsl:template match=“*”/>



Example output:

<customer> Joe </customer>
<customer> Mary </customer>

44

Creating XML Output (Cont.)


Note: Cannot directly insert a xsl:value-of tag inside
another tag


E.g. cannot create an attribute for <customer> in the
previous example by directly using xsl:value-of



XSLT provides a construct xsl:attribute to handle this
situation


xsl:attribute adds attribute to the preceding element



E.g. <customer>

<xsl:attribute name=“customer_id”>
<xsl:value-of select = “customer_id”/>

</xsl:attribute>
</customer>

results in output of the form
<customer customer_id=“….”> ….



xsl:element is used to create output elements with
computed names

45

Structural Recursion（结构递归）


Template action can apply templates recursively to the contents of a
matched element

<xsl:template match=“/bank”>
<customers>
<xsl:template apply-templates/>
</customers >

</xsl:template>
<xsl:template match=“/customer”>

<customer>
<xsl:value-of select=“customer_name”/>
</customer>

</xsl:template>
<xsl:template match=“*”/>



Example output:
<customers>

<customer> John </customer>
<customer> Mary </customer>

</customers>

46

Joins in XSLT


XSLT keys allow elements to be looked up (indexed) by values of
subelements or attributes


Keys must be declared (with a name) and, the key() function can then
be used for lookup. E.g.

<xsl:key name=“acctno” match=“account”
use=“account_number”/>

<xsl:value-of select=key(“acctno”, “A-101”)


Keys permit (some) joins to be expressed in XSLT
<xsl:key name=“acctno” match=“account” use=“account_number”/>
<xsl:key name=“custno” match=“customer” use=“customer_name”/>
<xsl:template match=“depositor”>

<cust_acct>
<xsl:value-of select=key(“custno”, “customer_name”)/>
<xsl:value-of select=key(“acctno”, “account_number”)/>
</cust_acct>

</xsl:template>
<xsl:template match=“*”/>

47

Sorting in XSLT


Using an xsl:sort directive inside a template causes all
elements matching the template to be sorted


Sorting is done before applying other templates

<xsl:template match=“/bank”>
<xsl:apply-templates select=“customer”>
<xsl:sort select=“customer_name”/>
</xsl:apply-templates>

</xsl:template>
<xsl:template match=“customer”>

<customer>
<xsl:value-of select=“customer_name”/>
<xsl:value-of select=“customer_street”/>
<xsl:value-of select=“customer_city”/>

</customer>
<xsl:template>
<xsl:template match=“*”/>

48

Application Program Interface


There are two standard application program interfaces to
XML data:


SAX (Simple API for XML)


Based on parser model, user provides event handlers for parsing
events


E.g. start of element, end of element


Not suitable for database applications


DOM (Document Object Model)


XML data is parsed into a tree representation



Variety of functions provided for traversing the DOM tree



E.g.: Java DOM API provides Node class with methods

getParentNode(), getFirstChild(), getNextSibling()
getAttribute(), getData() (for text node)
getElementsByTagName(), …



Also provides functions for updating DOM tree

49

Storage of XML Data


XML data can be stored in


Non-relational data stores


Flat files


Natural for storing XML


But has all problems discussed in Chapter 1 (no concurrency, no
recovery, …)



XML database


Database built specifically for storing XML data, supporting
DOM model and declarative querying



Currently no commercial-grade systems


Relational databases


Data must be translated into relational form



Advantage: mature database systems



Disadvantages: overhead of translating data and queries

50

Storage of XML in Relational
Databases


Alternatives:


String Representation



Tree Representation



Map to relations

51

String Representation（字符表示法）


Store each top level element as a string field of a tuple in
a relational database


Use a single relation to store all elements, or



Use a separate relation for each top-level element type


E.g. account, customer, depositor relations


Each with a string-valued attribute to store the element



Indexing:


Store values of subelements/attributes to be indexed as extra
fields of the relation, and build indices on these fields


E.g. customer_name or account_number



Some database systems support function indices, which use
the result of a function as the key value.


The function should return the value of the required
subelement/attribute

52

String Representation (Cont.)


Benefits:


Can store any XML data even without DTD



As long as there are many top-level elements in a
document, strings are small compared to full document


Allows fast access to individual elements.



Drawback: Need to parse strings to access values
inside the elements


Parsing is slow.

53

Tree Representation（树表示法）



Tree representation: model XML data as tree and store
using relations

nodes(id, type, label, value)
child (child_id, parent_id)



Each element/attribute is given a unique identifier



Type indicates element/attribute



Label specifies the tag name of the element/name of attribute



Value is the text value of the element/attribute



The relation child notes the parent-child relationships in the
tree


Can add an extra attribute to child to record ordering of children

bank (id:1)

customer (id:2) account (id: 5)

customer_name
(id: 3)

account_number
(id: 7)

54

Tree Representation (Cont.)


Benefit: Can store any XML data, even without DTD



Drawbacks:


Data is broken up into too many pieces, increasing space
overheads



Even simple queries require a large number of joins,
which can be slow

55

Mapping XML Data to Relations（映射到关系）



Relation created for each element type whose schema is
known:


An id attribute to store a unique id for each element



A relation attribute corresponding to each element attribute



A parent_id attribute to keep track of parent element


As in the tree representation


Position information (ith child) can be store too



All subelements that occur only once can become relation
attributes


For text-valued subelements, store the text as attribute value



For complex subelements, can store the id of the subelement



Subelements that can occur multiple times represented in a
separate table


Similar to handling of multivalued attributes when converting
ER diagrams to tables

56

Storing XML Data in Relational
Systems


Publishing （发布） : process of converting relational
data to an XML format



Shredding （分解） : process of converting an XML
document into a set of tuples to be inserted into one or
more relations



XML-enabled database systems support automated
publishing and shredding



Some systems offer native storage of XML data using
the xml data type. Special internal data structures and
indices are used for efficiency

57

SQL/XML


New standard SQL extension that allows creation of nested
XML output


Each output tuple is mapped to an XML element row

<bank>
<account>

<row>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</row>
…. more rows if there are more output tuples …
</account>

</bank>

58

SQL Extensions


xmlelement creates XML elements



xmlattributes creates attributes

select xmlelement (name “account,
xmlattributes (account_number as

account_number),
xmlelement (name “branch_name”,

branch_name),
xmlelement (name “balance”, balance))

from account

59

Web Services


The Simple Object Access Protocol (SOAP) standard
（简单对象访问协议）


Invocation of procedures across applications with distinct
databases



XML used to represent procedure input and output



A Web service is a site providing a collection of SOAP
procedures


Described using the Web Services Description Language
(WSDL)



Directories of Web services are described using the
Universal Description, Discovery, and Integration (UDDI)
standard（通用描述、发现和集成标准）

	XML �(Extensible Markup Language)�扩展标记语言
	XML
	Introduction
	XML Introduction (Cont.)
	XML: Motivation
	XML Motivation (Cont.)
	Comparison with Relational Data
	Structure of XML Data
	Example of Nested Elements
	Motivation for Nesting
	Structure of XML Data (Cont.)
	Attributes（属性）
	Attributes vs. Subelements
	Namespaces（名字空间）
	More on XML Syntax
	XML Document Schema
	Document Type Definition (DTD)
	Element Specification in DTD
	Bank DTD
	Attribute Specification in DTD
	IDs and IDREFs
	Bank DTD with Attributes
	XML data with ID and IDREF attributes
	Limitations of DTDs
	XML Schema
	XML Schema Version of Bank DTD
	XML Schema Version of Bank DTD
	More features of XML Schema
	Querying and Transforming XML Data
	Tree Model of XML Data
	XPath
	XPath (Cont.)
	Functions in XPath
	More XPath Features
	XQuery
	FLWOR Syntax in XQuery
	Joins（连接）
	Nested Queries（嵌套查询）
	Sorting（排序） in XQuery
	Functions, Types and Other XQuery Features
	XSLT
	XSLT Templates
	Creating XML Output
	Creating XML Output (Cont.)
	Structural Recursion（结构递归）
	Joins in XSLT
	Sorting in XSLT
	Application Program Interface
	Storage of XML Data
	Storage of XML in Relational Databases
	String Representation（字符表示法）
	String Representation (Cont.)
	Tree Representation（树表示法）
	Tree Representation (Cont.)
	Mapping XML Data to Relations（映射到关系）
	Storing XML Data in Relational Systems
	SQL/XML
	SQL Extensions
	Web Services

