
1

XML
(Extensible Markup Language)

扩展标记语言

2

XML

Structure of XML Data

XML Document Schema

Querying and Transformation

Application Program Interfaces to XML

Storage of XML Data

XML Applications

3

Introduction

XML: Extensible Markup Language

Defined by the WWW Consortium (W3C)

Derived from SGML (Standard Generalized Markup
Language), but simpler to use than SGML

Documents have tags giving extra information about
sections of the document

E.g. <title> XML </title> <slide> Introduction …</slide>

Extensible, unlike HTML

Users can add new tags, and separately specify how the tag
should be handled for display

4

XML Introduction (Cont.)

The ability to specify new tags, and to create nested tag
structures make XML a great way to exchange data, not
just documents.

Much of the use of XML has been in data exchange applications, not as a replacement for
HTML

Tags make data (relatively) self-documenting （自描述）

E.g.
<bank>

<account>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</account>
<depositor>

<account_number> A-101 </account_number>
<customer_name> Johnson </customer_name>

</depositor>
</bank>

5

XML: Motivation

Data interchange is critical in today’s networked world

Examples:

Banking: funds transfer

Order processing (especially inter-company orders)

Scientific data

Chemistry: ChemML, …

Genetics: BSML (Bio-Sequence Markup Language), …

Paper flow of information between organizations is being
replaced by electronic flow of information

Each application area has its own set of standards for
representing information

XML has become the basis for all new generation data
interchange formats

6

XML Motivation (Cont.)

Earlier generation formats were based on plain text with line
headers indicating the meaning of fields

Similar in concept to email headers

Does not allow for nested structures, no standard “type” language

Tied too closely to low level document structure (lines, spaces, etc)

Each XML based standard defines what are valid elements,
using

XML type specification languages to specify the syntax

DTD (Document Type Descriptors)

XML Schema

Plus textual descriptions of the semantics

XML allows new tags to be defined as required

However, this may be constrained by DTDs

A wide variety of tools is available for parsing, browsing and
querying XML documents/data

7

Comparison with Relational Data

Inefficient: tags, which in effect represent schema
information, are repeated

Better than relational tuples as a data-exchange format

Unlike relational tuples, XML data is self-documenting
due to presence of tags

Non-rigid format: tags can be added

Allows nested structures

Wide acceptance, not only in database systems, but also
in browsers, tools, and applications

8

Structure of XML Data

Tag（标签）

label for a section of data

Element（元素） section of data beginning with
<tagname> and ending with matching </tagname>

Elements must be properly nested

Proper nesting

<account> … <balance> …. </balance> </account>

Improper nesting

<account> … <balance> …. </account> </balance>

Formally: every start tag must have a unique matching
end tag, that is in the context of the same parent element.

Every document must have a single top-level element

9

Example of Nested Elements
<bank-1>

<customer>
<customer_name> Hayes </customer_name>

<customer_street> Main </customer_street>
<customer_city> Harrison </customer_city>
<account>

<account_number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>
<account>

…
</account>

</customer>
.
.

</bank-1>

10

Motivation for Nesting

Nesting of data is useful in data transfer

Example: elements representing customer_id,
customer_name, and address nested within an order
element

Nesting is not supported, or discouraged, in relational
databases

With multiple orders, customer name and address are
stored redundantly

normalization replaces nested structures in each order by
foreign key into table storing customer name and address
information

Nesting is supported in object-relational databases

But nesting is appropriate when transferring data

External application does not have direct access to data
referenced by a foreign key

11

Structure of XML Data (Cont.)

Mixture of text with sub-elements is legal in XML.

Example:
<account>

This account is seldom used any more.
<account_number> A-102</account_number>
<branch_name> Perryridge</branch_name>
<balance>400 </balance>

</account>

Useful for document markup, but discouraged for data
representation

12

Attributes（属性）

Elements can have attributes

<account acct-type = “checking” >
<account_number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>

Attributes are specified by name=value pairs inside the
starting tag of an element

An element may have several attributes, but each
attribute name can only occur once

<account acct-type = “checking” monthly-fee=“5”>

13

Attributes vs. Subelements

Distinction between subelement and attribute

In the context of documents, attributes are part of markup,
while subelement contents are part of the basic document
contents

In the context of data representation, the difference is
unclear and may be confusing

Same information can be represented in two ways

<account account_number = “A-101”> …. </account>

<account>
<account_number>A-101</account_number> …

</account>

Suggestion: use attributes for identifiers of elements, and
use subelements for contents

14

Namespaces（名字空间）

XML data has to be exchanged between organizations

Same tag name may have different meaning in different
organizations, causing confusion on exchanged documents

Specifying a unique string as an element name avoids
confusion

Better solution: use unique-name:element-name

Avoid using long unique names all over document by using
XML Namespaces
<bank xmlns:FB=‘http://www.FirstBank.com’>

…
<FB:branch>

<FB:branchname>Downtown</FB:branchname>
<FB:branchcity> Brooklyn </FB:branchcity>

</FB:branch>
…

</bank>

http://www.firstbank.com/

15

More on XML Syntax

Elements without subelements or text content can be
abbreviated by ending the start tag with a /> and
deleting the end tag

<account number=“A-101” branch=“Perryridge”
balance=“200”/>

To store string data that may contain tags, without the
tags being interpreted as subelements, use CDATA as
below

<![CDATA[<account> … </account>]]>

Here, <account> and </account> are treated as just strings
CDATA stands for “character data”

16

XML Document Schema

Database schemas constrain what information can be stored,
and the data types of stored values

XML documents are not required to have an associated
schema

However, schemas are very important for XML data
exchange

Otherwise, a site cannot automatically interpret data received
from another site

Two mechanisms for specifying XML schema

Document Type Definition (DTD)

Widely used

XML Schema

Newer, increasing use

17

Document Type Definition (DTD)

The type of an XML document can be specified using
a DTD

DTD constraints structure of XML data

What elements can occur

What attributes can/must an element have

What subelements can/must occur inside each element,
and how many times.

DTD does not constrain data types

All values represented as strings in XML

DTD syntax

<!DOCTYPE document […]>

<!ELEMENT element (subelements-specification) >

<!ATTLIST element (attributes) >

18

Element Specification in DTD

Subelements can be specified as

names of elements, or

#PCDATA (parsed character data), i.e., character strings

EMPTY (no subelements) or ANY (anything can be a subelement)

Example
<! ELEMENT depositor (customer_name account_number)>
<! ELEMENT customer_name (#PCDATA)>
<! ELEMENT account_number (#PCDATA)>

Subelement specification may have regular expressions
<!ELEMENT bank ((account | customer | depositor)+)>

Notation:

“|” - alternatives

“+” - 1 or more occurrences

“*” - 0 or more occurrences

“?” – 0 or 1

19

Bank DTD

<!DOCTYPE bank [
<!ELEMENT bank ((account | customer | depositor)+)>
<!ELEMENT account (account_number branch_name
balance)>
<! ELEMENT customer(customer_name customer_street
customer_city)>
<! ELEMENT depositor (customer_name
account_number)>
<! ELEMENT account_number (#PCDATA)>
<! ELEMENT branch_name (#PCDATA)>
<! ELEMENT balance(#PCDATA)>
<! ELEMENT customer_name(#PCDATA)>
<! ELEMENT customer_street(#PCDATA)>
<! ELEMENT customer_city(#PCDATA)>

]>

20

Attribute Specification in DTD

Attribute specification : for each attribute

Name

Type of attribute

CDATA

ID (identifier) or IDREF (ID reference) or IDREFS (multiple IDREFs)

more on this later

Whether

mandatory (#REQUIRED)

has a default value (value),

or neither (#IMPLIED)

Examples

<!ATTLIST account acct-type CDATA “checking”>

<!ATTLIST customer

customer_id ID # REQUIRED
accounts IDREFS # REQUIRED >

21

IDs and IDREFs

An element can have at most one attribute of type ID

The ID attribute value of each element in an XML
document must be distinct

Thus the ID attribute value is an object identifier

An attribute of type IDREF must contain the ID value
of an element in the same document

An attribute of type IDREFS contains a set of (0 or
more) ID values. Each ID value must contain the ID
value of an element in the same document

22

Bank DTD with Attributes

Bank DTD with ID and IDREF attribute types.

<!DOCTYPE bank-2[
<!ELEMENT account (branch, balance)>
<!ATTLIST account

account_number ID # REQUIRED
owners IDREFS # REQUIRED>

<!ELEMENT customer(customer_name,
customer_street, customer_city)>

<!ATTLIST customer
customer_id ID # REQUIRED
accounts IDREFS # REQUIRED>

… declarations for branch, balance, customer_name,
customer_street and customer_city

]>

23

XML data with ID and IDREF attributes

<bank-2>
<account account_number=“A-401” owners=“C100 C102”>

<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</account>
<customer customer_id=“C100” accounts=“A-401”>

<customer_name>Joe </customer_name>
<customer_street> Monroe </customer_street>
<customer_city> Madison</customer_city>

</customer>
<customer customer_id=“C102” accounts=“A-401 A-402”>

<customer_name> Mary </customer_name>
<customer_street> Erin </customer_street>
<customer_city> Newark </customer_city>

</customer>
</bank-2>

24

Limitations of DTDs

No typing of text elements and attributes

All values are strings, no integers, reals, etc.

Difficult to specify unordered sets of subelements

Order is usually irrelevant in databases (unlike in the
document-layout environment from which XML evolved)

(A | B)* allows specification of an unordered set, but

Cannot ensure that each of A and B occurs only once

IDs and IDREFs are untyped

The owners attribute of an account may contain a
reference to another account, which is meaningless

owners attribute should ideally be constrained to refer to customer
elements

25

XML Schema

XML Schema is a more sophisticated schema language
which addresses the drawbacks of DTDs. Supports

Typing of values

E.g. integer, string, decimal, boolean, date, etc

Also, constraints on min/max values

User-defined, complex types

Many more features, including

uniqueness and foreign key constraints, inheritance

XML Schema is itself specified in XML syntax, unlike
DTDs

More-standard representation, but verbose

XML Scheme is integrated with namespaces

BUT: XML Schema is significantly more complicated than
DTDs.

26

XML Schema Version of Bank DTD
<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
<xs:element name=“bank” type=“BankType”/>
<xs:element name=“account”>

<xs:complexType>
<xs:sequence>

<xs:element name=“account_number” type=“xs:string”/>
<xs:element name=“branch_name” type=“xs:string”/>
<xs:element name=“balance” type=“xs:decimal”/>

</xs:squence>
</xs:complexType>

</xs:element>
….. definitions of customer and depositor ….
<xs:complexType name=“BankType”>

<xs:squence>
<xs:element ref=“account” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“customer” minOccurs=“0” maxOccurs=“unbounded”/>
<xs:element ref=“depositor” minOccurs=“0” maxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
</xs:schema>

http://www.w3.org/2001/XMLSchema

27

XML Schema Version of Bank DTD

Choice of “xs:” was ours -- any other namespace
prefix could be chosen

Element “bank” has type “BankType”, which is
defined separately

xs:complexType is used later to create the named
complex type “BankType”

Element “account” has its type defined in-line

28

More features of XML Schema

Attributes specified by xs:attribute tag:

<xs:attribute name = “account_number”/>

adding the attribute use = “required” means value must be specified

Key constraint: “account numbers form a key for account elements under
the root bank element:

<xs:key name = “accountKey”>
<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:key>

Foreign key constraint from depositor to account:

<xs:keyref name = “depositorAccountKey” refer=“accountKey”>
<xs:selector xpath = “]bank/account”/>
<xs:field xpath = “account_number”/>

<\xs:keyref>

29

Querying and Transforming XML Data

Translation of information from one XML schema to
another

Querying on XML data

Above two are closely related, and handled by the same
tools

Standard XML querying/translation languages

XPath

Simple language consisting of path expressions

XSLT

Simple language designed for translation from XML to XML and
XML to HTML

XQuery

An XML query language with a rich set of features

30

Tree Model of XML Data

Query and transformation languages are based on a tree
model of XML data

An XML document is modeled as a tree, with nodes
corresponding to elements and attributes

Element nodes have child nodes, which can be attributes or
subelements

Text in an element is modeled as a text node child of the
element

Children of a node are ordered according to their order in the
XML document

Element and attribute nodes (except for the root node) have a
single parent, which is an element node

The root node has a single child, which is the root element of
the document

31

XPath

XPath is used to address (select) parts of documents using
path expressions

A path expression is a sequence of steps separated by “/”

Think of file names in a directory hierarchy

Result of path expression: set of values that along with
their containing elements/attributes match the specified
path

E.g. /bank-2/customer/customer_name evaluated on
the bank-2 data we saw earlier returns
<customer_name>Joe</customer_name>
<customer_name>Mary</customer_name>

E.g. /bank-2/customer/customer_name/text()

returns the same names, but without the enclosing tags

32

XPath (Cont.)

The initial “/” denotes root of the document (above the top-
level tag)

Path expressions are evaluated left to right

Each step operates on the set of instances produced by the
previous step

Selection predicates may follow any step in a path, in []

E.g. /bank-2/account[balance > 400]

returns account elements with a balance value greater than 400

/bank-2/account[balance] returns account elements containing a
balance subelement

Attributes are accessed using “@”

E.g. /bank-2/account[balance > 400]/@account_number

returns the account numbers of accounts with balance > 400

IDREF attributes are not dereferenced automatically (more on
this later)

33

Functions in XPath

XPath provides several functions

The function count() at the end of a path counts the number of
elements in the set generated by the path

E.g. /bank-2/account[count(./customer) > 2]

Returns accounts with > 2 customers

Also function for testing position (1, 2, ..) of node w.r.t.
siblings

Boolean connectives and and or and function not() can be
used in predicates

IDREFs can be referenced using function id()

id() can also be applied to sets of references such as IDREFS
and even to strings containing multiple references separated
by blanks

E.g. /bank-2/account/id(@owner)

returns all id numbers of customers referred to from the owners
attribute of account elements.

34

More XPath Features

Operator “|” used to implement union

E.g. /bank-2/account/id(@owner) | /bank-
2/loan/id(@borrower)

Gives customers with either accounts or loans

However, “|” cannot be nested inside other operators.

“//” can be used to skip multiple levels of nodes

E.g. /bank-2//customer_name

finds any customer_name element anywhere under the /bank-2
element, regardless of the element in which it is contained.

A step in the path can go to parents, siblings,
ancestors and descendants of the nodes generated
by the previous step, not just to the children

“//”, described above, is a short from for specifying
“all descendants”

“..” specifies the parent.

doc(name) returns the root of a named document

35

XQuery

XQuery is a general purpose query language for XML data

Currently being standardized by the World Wide Web
Consortium (W3C)

The textbook description is based on a January 2005 draft of
the standard. The final version may differ, but major features
likely to stay unchanged.

XQuery is derived from the Quilt query language, which
itself borrows from SQL, XQL and XML-QL

XQuery uses a

for … let … where … order by …result …
(FLWOR) syntax

for SQL from
where SQL where
order by SQL order by
result SQL select
let allows temporary variables, and has no equivalent in

SQL

36

FLWOR Syntax in XQuery

For clause uses XPath expressions, and variable in for clause
ranges over values in the set returned by XPath

Simple FLWOR expression in XQuery

find all accounts with balance > 400, with each result enclosed in
an <account_number> .. </account_number> tag

for $x in /bank-2/account
let $acctno := $x/@account_number
where $x/balance > 400
return <account_number> { $acctno } </account_number>

Items in the return clause are XML text unless enclosed in {}, in
which case they are evaluated

Let clause not really needed in this query, and selection can be
done In XPath. Query can be written as:

for $x in /bank-2/account[balance>400]
return <account_number> { $x/@account_number }

</account_number>

37

Joins（连接）

Joins are specified in a manner very similar to SQL
for $a in /bank/account,

$c in /bank/customer,
$d in /bank/depositor

where $a/account_number = $d/account_number
and $c/customer_name = $d/customer_name

return <cust_acct> { $c $a } </cust_acct>

The same query can be expressed with the selections
specified as XPath selections:

for $a in /bank/account
$c in /bank/customer
$d in /bank/depositor[

account_number = $a/account_number and
customer_name = $c/customer_name]

return <cust_acct> { $c $a } </cust_acct>

38

Nested Queries（嵌套查询）

The following query converts data from the flat structure
for bank information into the nested structure used in
bank-1

<bank-1> {
for $c in /bank/customer
return
<customer>

{ $c/* }
{ for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number=$d/account_number]
return $a }
</customer>

} </bank-1>

$c/* denotes all the children of the node to which $c is
bound, without the enclosing top-level tag

$c/text() gives text content of an element without any
subelements / tags

39

Sorting（排序） in XQuery

The order by clause can be used at the end of any expression. E.g. to return customers sorted by
name

for $c in /bank/customer
order by $c/customer_name
return <customer> { $c/* } </customer>

Use order by $c/customer_name to sort in descending order

Can sort at multiple levels of nesting (sort by customer_name, and by account_number within
each customer)

<bank-1> {
for $c in /bank/customer
order by $c/customer_name
return

<customer>
{ $c/* }

{ for $d in /bank/depositor[customer_name=$c/customer_name],
$a in /bank/account[account_number=$d/account_number] }

order by $a/account_number
return <account> $a/* </account>

</customer>
} </bank-1>

40

Functions, Types and Other XQuery Features

User defined functions with the type system of XMLSchema
function balances(xs:string $c) returns list(xs:decimal*) {

for $d in /bank/depositor[customer_name = $c],
$a in /bank/account[account_number =

$d/account_number]
return $a/balance

}

Types are optional for function parameters and return values

The * (as in decimal*) indicates a sequence of values of that
type

Universal and existential quantification in where clause
predicates

some $e in path satisfies P

every $e in path satisfies P

XQuery also supports If-then-else clauses

41

XSLT

A stylesheet stores formatting options for a document,
usually separately from document

E.g. an HTML style sheet may specify font colors and sizes
for headings, etc.

The XML Stylesheet Language (XSL) was originally
designed for generating HTML from XML

XSLT is a general-purpose transformation language

Can translate XML to XML, and XML to HTML

XSLT transformations are expressed using rules called
templates(模板）

Templates combine selection using XPath with construction of
results

42

XSLT Templates

Example of XSLT template with match and select part

<xsl:template match=“/bank-2/customer”>
<xsl:value-of select=“customer_name”/>

</xsl:template>
<xsl:template match=“*”/>

The match attribute of xsl:template specifies a pattern in XPath

Elements in the XML document matching the pattern are
processed by the actions within the xsl:template element

xsl:value-of selects (outputs) specified values (here,
customer_name)

For elements that do not match any template

Attributes and text contents are output as is

Templates are recursively applied on subelements

The <xsl:template match=“*”/> template matches all
elements that do not match any other template

Used to ensure that their contents do not get output.

If an element matches several templates, only one is used based
on a complex priority scheme/user-defined priorities

43

Creating XML Output

Any text or tag in the XSL stylesheet that is not in the
xsl namespace is output as is

E.g. to wrap results in new XML elements.
<xsl:template match=“/bank-2/customer”>

<customer>
<xsl:value-of select=“customer_name”/>
</customer>

</xsl;template>
<xsl:template match=“*”/>

Example output:

<customer> Joe </customer>
<customer> Mary </customer>

44

Creating XML Output (Cont.)

Note: Cannot directly insert a xsl:value-of tag inside
another tag

E.g. cannot create an attribute for <customer> in the
previous example by directly using xsl:value-of

XSLT provides a construct xsl:attribute to handle this
situation

xsl:attribute adds attribute to the preceding element

E.g. <customer>

<xsl:attribute name=“customer_id”>
<xsl:value-of select = “customer_id”/>

</xsl:attribute>
</customer>

results in output of the form
<customer customer_id=“….”> ….

xsl:element is used to create output elements with
computed names

45

Structural Recursion（结构递归）

Template action can apply templates recursively to the contents of a
matched element

<xsl:template match=“/bank”>
<customers>
<xsl:template apply-templates/>
</customers >

</xsl:template>
<xsl:template match=“/customer”>

<customer>
<xsl:value-of select=“customer_name”/>
</customer>

</xsl:template>
<xsl:template match=“*”/>

Example output:
<customers>

<customer> John </customer>
<customer> Mary </customer>

</customers>

46

Joins in XSLT

XSLT keys allow elements to be looked up (indexed) by values of
subelements or attributes

Keys must be declared (with a name) and, the key() function can then
be used for lookup. E.g.

<xsl:key name=“acctno” match=“account”
use=“account_number”/>

<xsl:value-of select=key(“acctno”, “A-101”)

Keys permit (some) joins to be expressed in XSLT
<xsl:key name=“acctno” match=“account” use=“account_number”/>
<xsl:key name=“custno” match=“customer” use=“customer_name”/>
<xsl:template match=“depositor”>

<cust_acct>
<xsl:value-of select=key(“custno”, “customer_name”)/>
<xsl:value-of select=key(“acctno”, “account_number”)/>
</cust_acct>

</xsl:template>
<xsl:template match=“*”/>

47

Sorting in XSLT

Using an xsl:sort directive inside a template causes all
elements matching the template to be sorted

Sorting is done before applying other templates

<xsl:template match=“/bank”>
<xsl:apply-templates select=“customer”>
<xsl:sort select=“customer_name”/>
</xsl:apply-templates>

</xsl:template>
<xsl:template match=“customer”>

<customer>
<xsl:value-of select=“customer_name”/>
<xsl:value-of select=“customer_street”/>
<xsl:value-of select=“customer_city”/>

</customer>
<xsl:template>
<xsl:template match=“*”/>

48

Application Program Interface

There are two standard application program interfaces to
XML data:

SAX (Simple API for XML)

Based on parser model, user provides event handlers for parsing
events

E.g. start of element, end of element

Not suitable for database applications

DOM (Document Object Model)

XML data is parsed into a tree representation

Variety of functions provided for traversing the DOM tree

E.g.: Java DOM API provides Node class with methods

getParentNode(), getFirstChild(), getNextSibling()
getAttribute(), getData() (for text node)
getElementsByTagName(), …

Also provides functions for updating DOM tree

49

Storage of XML Data

XML data can be stored in

Non-relational data stores

Flat files

Natural for storing XML

But has all problems discussed in Chapter 1 (no concurrency, no
recovery, …)

XML database

Database built specifically for storing XML data, supporting
DOM model and declarative querying

Currently no commercial-grade systems

Relational databases

Data must be translated into relational form

Advantage: mature database systems

Disadvantages: overhead of translating data and queries

50

Storage of XML in Relational
Databases

Alternatives:

String Representation

Tree Representation

Map to relations

51

String Representation（字符表示法）

Store each top level element as a string field of a tuple in
a relational database

Use a single relation to store all elements, or

Use a separate relation for each top-level element type

E.g. account, customer, depositor relations

Each with a string-valued attribute to store the element

Indexing:

Store values of subelements/attributes to be indexed as extra
fields of the relation, and build indices on these fields

E.g. customer_name or account_number

Some database systems support function indices, which use
the result of a function as the key value.

The function should return the value of the required
subelement/attribute

52

String Representation (Cont.)

Benefits:

Can store any XML data even without DTD

As long as there are many top-level elements in a
document, strings are small compared to full document

Allows fast access to individual elements.

Drawback: Need to parse strings to access values
inside the elements

Parsing is slow.

53

Tree Representation（树表示法）

Tree representation: model XML data as tree and store
using relations

nodes(id, type, label, value)
child (child_id, parent_id)

Each element/attribute is given a unique identifier

Type indicates element/attribute

Label specifies the tag name of the element/name of attribute

Value is the text value of the element/attribute

The relation child notes the parent-child relationships in the
tree

Can add an extra attribute to child to record ordering of children

bank (id:1)

customer (id:2) account (id: 5)

customer_name
(id: 3)

account_number
(id: 7)

54

Tree Representation (Cont.)

Benefit: Can store any XML data, even without DTD

Drawbacks:

Data is broken up into too many pieces, increasing space
overheads

Even simple queries require a large number of joins,
which can be slow

55

Mapping XML Data to Relations（映射到关系）

Relation created for each element type whose schema is
known:

An id attribute to store a unique id for each element

A relation attribute corresponding to each element attribute

A parent_id attribute to keep track of parent element

As in the tree representation

Position information (ith child) can be store too

All subelements that occur only once can become relation
attributes

For text-valued subelements, store the text as attribute value

For complex subelements, can store the id of the subelement

Subelements that can occur multiple times represented in a
separate table

Similar to handling of multivalued attributes when converting
ER diagrams to tables

56

Storing XML Data in Relational
Systems

Publishing （发布） : process of converting relational
data to an XML format

Shredding （分解） : process of converting an XML
document into a set of tuples to be inserted into one or
more relations

XML-enabled database systems support automated
publishing and shredding

Some systems offer native storage of XML data using
the xml data type. Special internal data structures and
indices are used for efficiency

57

SQL/XML

New standard SQL extension that allows creation of nested
XML output

Each output tuple is mapped to an XML element row

<bank>
<account>

<row>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</row>
…. more rows if there are more output tuples …
</account>

</bank>

58

SQL Extensions

xmlelement creates XML elements

xmlattributes creates attributes

select xmlelement (name “account,
xmlattributes (account_number as

account_number),
xmlelement (name “branch_name”,

branch_name),
xmlelement (name “balance”, balance))

from account

59

Web Services

The Simple Object Access Protocol (SOAP) standard
（简单对象访问协议）

Invocation of procedures across applications with distinct
databases

XML used to represent procedure input and output

A Web service is a site providing a collection of SOAP
procedures

Described using the Web Services Description Language
(WSDL)

Directories of Web services are described using the
Universal Description, Discovery, and Integration (UDDI)
standard（通用描述、发现和集成标准）

	XML �(Extensible Markup Language)�扩展标记语言
	XML
	Introduction
	XML Introduction (Cont.)
	XML: Motivation
	XML Motivation (Cont.)
	Comparison with Relational Data
	Structure of XML Data
	Example of Nested Elements
	Motivation for Nesting
	Structure of XML Data (Cont.)
	Attributes（属性）
	Attributes vs. Subelements
	Namespaces（名字空间）
	More on XML Syntax
	XML Document Schema
	Document Type Definition (DTD)
	Element Specification in DTD
	Bank DTD
	Attribute Specification in DTD
	IDs and IDREFs
	Bank DTD with Attributes
	XML data with ID and IDREF attributes
	Limitations of DTDs
	XML Schema
	XML Schema Version of Bank DTD
	XML Schema Version of Bank DTD
	More features of XML Schema
	Querying and Transforming XML Data
	Tree Model of XML Data
	XPath
	XPath (Cont.)
	Functions in XPath
	More XPath Features
	XQuery
	FLWOR Syntax in XQuery
	Joins（连接）
	Nested Queries（嵌套查询）
	Sorting（排序） in XQuery
	Functions, Types and Other XQuery Features
	XSLT
	XSLT Templates
	Creating XML Output
	Creating XML Output (Cont.)
	Structural Recursion（结构递归）
	Joins in XSLT
	Sorting in XSLT
	Application Program Interface
	Storage of XML Data
	Storage of XML in Relational Databases
	String Representation（字符表示法）
	String Representation (Cont.)
	Tree Representation（树表示法）
	Tree Representation (Cont.)
	Mapping XML Data to Relations（映射到关系）
	Storing XML Data in Relational Systems
	SQL/XML
	SQL Extensions
	Web Services

