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Pharmacophore

• IUPAC (International Union of Pure and 
Applied Chemistry)
– An ensemble of steric and electronic 

features that is necessary to ensure 
the optimal supramolecular 
interactions with a specific biological 
target and to trigger (or block) its 
biological response



Pharmacophore

• Molecular features
– For molecular recognition between
– a ligand 
– a biological macromolecule

• Structural analysis
– Superimposed active compounds
– Binding site of the receptor



Pharmacophore

• Applications
– Vitural screening
– 3D-QSAR
– De novo drug design

• Softwares
– Sybyl
– Discovery studio
– MOE



Pharmacophore 
in 2D

Geometric arrangement of functional groups 
of the ligand that are required for “activity”



A pharmacophore is a spatial arrangement of atoms or functional 
groups believed to be responsible for biological activity

Pharmacophore in 3D



A collection of functions that define the meaning, appearance 
and methods of calculation of ligand annotation points and 
their attached labels. The scheme defines how each ligand in 
the searched database is annotated. A typical scheme is PCH 
(Polarity-Charge-Hydrophobicity).

Label Definition 
Don Hydrogen bond donors, including tautomeric donors. 
Acc Hydrogen bond acceptors, including tautomeric acceptors. 
Cat Cations, including resonance cations. 
Ani Anions, including resonance anions. 
Hyd Hydrophobic areas. 
Aro Aromatic centers. 

A pharmacophore scheme



Pharmacophore of KZ7088

7 points pharmacophores

The ligand KZ7088 in the active site of  SARS-CoV Mpro



Outline
• Objective: More efficient searching of 

chemical databases
• New methods developed to detect molecules 

with similar biology: One is based on 
connectivity (2D), the other on surface points 
(3D)

• Details of the algorithms presented here, 
starting with the 2D type

• Results: Lead Discovery – finding new drugs, 
finding new chemotypes

• Feature: Discovering Binding Patterns



2D: Environment around an atom

• 6-aminoquinoline
Assign Sybyl mol2 atom types
find connections
find connections to connections
create a tree down to n levels
‘bin’ the atom types for each level
create a ‘fingerprint’ for this atom

N2

Car  Car

Level 0

Level 1

Level 2Car, Car, Car

1 21 1
These features are created for every (heavy) atom in the molecule



Information-Gain Feature Selection

• We wish to select the important features.
• To do this we calculate the entropy of the data as 

a whole and for each class.
• This is used to select those features with the 

highest discrimination, e.g. active and inactive 
molecules.
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Classification

• The next step is to identify which 
molecules belong to which class.

• To do this we use a Naïve Bayesian 
Classifer using the features (atom 
environments) we have identified as 
being important.



*Naïve Bayesian Classifier 
(“classification by presumptive evidence”)

• Include all selected features fi in 
calculation of

• Ratio > 1: Class membership 1
• Ratio < 1: Class membership 2
• F: feature vector
• fi: feature elements
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Application: lead discovery
• Database: MDL Drug Data Report (MDDR)
• 957 ligands selected from MDDR

49 5HT3 Receptor antagonists,
40 Angiotensin Converting Enzyme inhib. (ACE),
111 HMG-Co-Reductase inhibitors (HMG),
134 PAF antagonists and
49 Thromboxane A2 antagonists (TXA2)
574 “inactives”
[Briem and Lessel, Perspect Drug Discov Des 2000, 
20, 245-264.]

• Calculated Hit rate among ten nearest 
neighbours for each molecule



Comparison

Briem and Lessel, Perspectives in Drug Discovery and Design 2000, 20, 245-264.
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Combining Information in 
Molecules

• In this method, we can extend the 
approach by extracting from a set of 
molecules those features having the 
best information gain

• This can describe patterns in molecules 
much better than individual cases



Combining Information of 5 
“Actives”
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Comparison using Large Data Set *
• 102,000 structures from the MDDR
• 11 Sets of Active Compounds, ranging in size from 

349 to 1246 entries – large and diverse data set
• Performance Measure: Fraction of Active Structures 

retrieved in Top 5% of sorted library
• Atom Environments were compared to Unity 

Fingerprints in Combination with Data Fusion (MAX) 
and Binary Kernel Discrimination (BKD)

• In case of Binary Kernel Discrimination and the Bayes 
Classifier 10 actives and 100 inactives used for 
training

* Hert et al., J. Chem. Inf. Comput. Sci. 2004 (ASAP Article)



Comparison of Methods
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Conclusions 2D Method
• Atom Environments suitable descriptor, 

perform well with Tanimoto
• Atom Environments / Bayesian Classifier 

outperform Unity Fingerprints in combination 
with Data Fusion and Binary Kernel 
Discrimination on a Large Dataset -> 
information fusion prior to screening superior

• Average Hit Rate ~ 10% higher (65% vs. 
57%) than the second best method

• Results on diverse targets may imply that 
method is generally applicable at high 
performance levels



Transformation to 3D
• Idea: To develop an analogous translationally 

and rotationally invariant (TRI) descriptor 
based on surface points

• Advantage: Switching from element atom 
types to interaction energies gives more 
general model -> scaffold hopping?

• In Addition: Local Description hopefully less 
conformationally dependent

• Approach to Fingerprint Surfaces; Tanimoto 
and other methods become applicable (until 
now mainly used for 2D fingerprints)



Transformation to 3D
• Two parts: Interaction fingerprint and 

shape description; here results using 
only interaction fingerprints are shown, 
shape description under development

• Information was merged from multiple 
molecules by using information-gain 
feature selection and the Naïve 
Bayesian Classifier



3D: Environment around a 
surface point: solvent 

accessible surface

Central Point 
(“Layer 0”)

Points in 
Layer 1

Points in 
Layer 2

Etc.



Algorithm
Interaction Energies at Surface 

Points, one Probe at a time

00010000 – 01100010 - 011101100

-0.35 EU

Binning Scheme
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-0.3
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Relation to other algorithms
• Surface Autocorrelation: Averaging of 

interaction energies – Here a favourable and 
unfavourable interaction in a given layer will 
both remain in the fingerprint

• GRIND: continuous variables from GRID; 
entire field of interaction energies; simplified; 
only maximum product enters descriptor

• MaP: categorical variables, counts are kept – 
size description

• (In addition the feature selection and scoring 
are handled differently)



Algorithm Flow
Step Program 

used
Parameters

Generation of 3D 
coordinates

Concord

Calculation of 
Surface Points

msms Sphere radius, probe 
size, triangulation 
density

Calculation of 
Interaction Energies

GRID Probe (and various 
others)

Transformation of 
interaction energies 
into descriptors

Perl 
script

Binning, number of 
bins, threshold levels



Standard Parameters

• MSMS: Probe radius 1.5 Å, Density 0.5- 
2.0 Points/ Å2, double Van-der-Waals radii 
for atoms, giving effectively solvent 
accessible surface

• GRID: DRY, C3, N1+, N2, O, O- probes, 
otherwise standard parameters

• Binning: Using variable number of layers, 
8 bits, cutoffs were set that equal 
frequencies are observed



Effect of Probe and Depth for Descriptor Generation on Overall Performance
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Surface Fingerprints & 
Tanimoto

• Tanimoto coefficient used for 2D 
fingerprints in combination with a variety of 
descriptors, here applied to surfaces

• Random Selection of single active 
compounds from MDDR dataset

• Calculation of average hit rates of Top 10 
list for whole dataset (5HT3, ACE, HMG, 
PAF, TXA2)

• Question: Is “scaffold hopping” observed?
• Examples: ACE, TXA2



Overall Performance 
Comparable to 2D methods
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Example: ACE, Query, Actives 
Found in Top 10, sorted
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Example: ACE, Query, Actives 
Found in Top 10, sorted



TXA2, 10 Hits among 
Top 10 (Sorted)
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TXA2, 10 Hits among 
Top 10 (Sorted)
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Surface Environments – Merging 
Information
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Conformational Variance
• MDDR Dataset (5HT3, ACE, HMG, PAF, 

TXA2)
• 10 Randomly selected compounds each
• 10 Conformations generated by GA search 

with large window (10° for rigid 5HT3, 100°
 for ACE, HMG, PAF, TXA2), giving diverse 

conformations
• One force field optimized conformation 

(Concord-generated) used to find other 
conformations of the same molecule in whole 
database of 937 structures, using Tanimoto 
Coefficient



Overall findings
• 64% of conformations found at the top 

10 positions -> 2/3 of compounds 
identified as being most similar (among 
list of > 900 structures and 40-134 
structures of same active dataset)

• >90% of conformations found in Top 5% 
of sorted database

• Conclusion: If molecules with the right 
features are present in the database, 
they will not be missed (in most cases) 
because they are represented by a 
particular conformation 



Example: 5HT3-0 (Rigid) – all 10 
Conformations identified as identical
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ACE-7 – 9 Conf. identified as identical
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Which features are selected for 
classification?

• Even if your classifier works, do the 
selected features make sense?

• Set of active vs. inactive molecules
• Information Gain calculated for each 

feature, those which are much more 
frequent among actives are “suspicious” 
and might constitute the pharmacophore

• Look at features from ACE, HMG and 
TXA2



Selected Features - HMG

• Binding Site: HMG + rigid lipophilic ring



HMG-15



HMG-19



ACE – Binding Site

Snake venom peptide analog with putative binding motif to 
angiotensin used in early compound design (Cushman et 
al., Biochemistry (1977), 16, 5484-5491.)
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Selected Features – ACE-31



Selected Features – ACE 39



TXA2

Yamamoto et al., J. Med. Chem. 1993 (36) 820

Yellow: lipophilic side chains



TXA2-44



TXA2-7



Summary
• 2D Method: Performs about as other 2D methods 

for single molecule searches, outperforms them 
by a large margin when combining information 
from multiple molecules (published in J. Chem. 
Inf. Comput. Sci. (2004) 44, 170-178)

• 3D Method: TR invariant, conformationally 
tolerant; combines high enrichment factors with 
scaffold hopping – discovery of new chemotypes

• Features shown to correlate with binding patterns
• Performance (at least in part) due to Bayesian 

Classifier, which is able to take multiple structures 
and active and inactive information into account



Course Outline
• Introduction and Case Study
• Drug Targets

– Sequence analysis
– Protein structure prediction
– Molecular simulation

• Molecular Docking
• Drug Design

– QSAR
– Pharmacophore
– De novo Drug Design
– Combinatorial library
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