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Modularity in Cellular Networks

» Hypothesis:

Biological function are carried by discrete functional modules.
ssHartwell, L.-H., Hopfield, J. J., Leibler, S., & Murray, A. W., Nature, 1999.

» Traditional view of modularity:

X I
Y

»Question: Is modularity a myth, or a structural property of biological networks?
(are biological networks fundamentally modular?)



From molecular
to modular cell biology

Leland H. Hartwell, John J. Hopfield, Stanislas Leibler and Andrew W. Murray

impacts

Cellular functions, such as signal transmission, are carried out by ‘modules’
made up of many species of interacting molecules. Understanding how
modules work has depended on combining phenomenological analysis with
molecular studies. General principles that govern the structure and
behaviour of modules may be discovered with help from synthetic sciences
such as engineering and computer science, from stronger interactions
between experiment and theory in cell biology, and from an appreciation of

evolutionary constraints.

Ithough living svstems obey the laws of
phyvsics and chemistry, the notion of
function or purpose differentiates biol-

ogy from other natural sciences. Organisms
existto reproduce, whereas, outside religious
belief, rocks and stars have no purpose.
Selection for function has produced the liv-
ing cell, with a unique set of properties that
distinguish it from inanimate systems of
interacting molecules. Cells exist far from
thermal equilibrium by harvesting energy
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many components. For example, in the
signal transduction svstem in veast that
converts the detection of a pheromaone into
the act of mating, there is no single protein
responsible for amplifving the input signal
provided by the pheromone molecule.

To describe biological inctions, we need
a vocabulary that contains concepts such as
amplification, adaptation, robustness, insu-
lation, error correction and coincidence
detection. For example, to decipher how the

Having described such concepts, we need to
explain how they arise from interactions
amongcomponentsin the cell.

We argue here for the recognition of
functional ‘modules” as a critical level of bio-
logical organization. Modules are composed
of many tvpes of molecale. Thev have dis-
crete functions that arise from interactions
amang their components (proteins, DNA,
RXA and small malecules), but these func-
tions cannot easily be predicted by studving
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Modularity in cell biology
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Definition of a module

* Loosely linked island of densely
connected nodes

* Groups of co-expressed genes



Concept of modules in a network




Concept of modules in a networ
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Computational analysis of modular
structures

Data clustering approach



Concept of data clustering analysis

» Partitioning a data set into groups so
that points in one group are similar to
each other and are as different as
possible from the points in other groups.

* The validity of a clustering is often in
the eye of beholder.



Concept of data clustering analysis

* In order to describe two data points are
similar or not, we need to define a similarity
measure.

- We also need a score function for our
objectives.

* A clustering algorithm can be used to
partition the data set with optimized score
function.



Types of clustering algorithms

» Partition-based clustering algorithms
* Hierarchical clustering algorithms

* Probabilistic model-based clustering
algorithms



Similarity measure for network
clustering

- Correlation
» Shortest path length

+ Edge betweenness



Score function for network clustering

+ To maximize the intra group connections
as many as possible and to minimize the
inter group connection as few as
possible.



Quantitative measurement of
network modularity

Modularity Q
Q= Ze —a’
a = Zeij

e; IS the fraction of edges In network connecting
moduleil and |



Threshold selection
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Examples of agglomerative
hierarchical clustering



Pyrimidine metabolism

E. Ravasz et al., Science, 2002

Modules in the E. coli metabolism
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Spotted microarray for
Saccharomyces cerevisiae

Similarity measure
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Regulatory module network
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High-resolution analysis of condition-specific regulatory modules in
Saccharomyces cerevisiae
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Abstract

We present an approach for identifying condition-specific regulatory modules by using separate
units of gene expression profiles along with ChlP-chip and motif data from Saccharomyces cerevisiae.
By investigating the unique and commeon features of the obtained condition-specific modules, we
detected several important properties of transcriptional network reorganizatdon. Our approach
reveals the functionally distinct coregulated submodules embedded in a coexpressed gene module
and provides an effective method for identifying various condition-specific regulatory events at high

Genome Biology, 9, R2, (2008).




Limitations of Hierarchical Clustering

* Once a decision Is made to combine two
clusters, it cannot be undone

* No objective function is directly minimized

 Different schemes have problems with one
or more of the following:
— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and
convex shapes

— Breaking large clusters



Simulated Annealing (SA)

« Simulated annealing is

a powerful

technique to provide high quality solutions
to some difficult combinatorial problems

* |t keeps a variable Temperature (T) which
determines the behavior of the annealing

process. This variable
very large value at the

T Is Initialized to a

neginning, and will

be gradually decreasec

(cooled down).



Simulated Annealing

Algorithm:
Initialize T and a feasible solution f
While (T > a threshold)
« Make a slight modification to f to get g
» Check If g is better than f, 1.e., cost(g) <
cost(f)?

* |f yes, accept g, I.e., f « g; else, compute p as
e-k(cost(@)-cost)T where k is a positive constant,
and then, accept g with probability p

« Update T



Basic Ingredients of Simulated
Annealing

Solution Space
Neighboring Structure
Cost Function

Annealing Schedule

— Moves are selected randomly, and the
probability that a move is accepted is
proportional to system’s current temp
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Functional cartography of complex
metabolic networks

Roger Guimera & Luis A. Nunes Amaral

NICO and Department of Chemical and Biological Engineering, Northwestern
University, Evanston, [llinois 60208, UsA

Guimera and Amaral, Nature 2005.
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UUF=N=acelyl=U=glucosamine

- Glycan biosynthesis & metabolism
- Metabolism of cofactors & vitamins
- Biosynthesis of secondary metabolites
- Aminc-acid metabolism

D Carbohydrate metabolism

- Nucleotide metabolism

D Lipid metabolism

D Energy metabolism
D Biodegradation of xenobiotics

2 Non-hub connector
) Connector hub
B Frovincial hub

— Module=module
— Module=node

— Mode=node

e

re 3 Cartographic representation of the metabolic network of E. coli. Each circle
ssents a module and is coloured according to the KEGG pathway classification of the

ibolites it contains. Certain important nodes are depicted as triangles (non-hub
iectors), hexagons (connector hubs) and squares (provincial hubs). Interactions
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and 574 links. This representation was obtained using the program Pajek. Each noc
coloured according to the ‘main’ colour of its module, as obtained from the cartogra
representation.



Case study

Comparative analysis of metabolic
networks between chloroplast and
cynobacteria.



Global Topology of metabolic networks of chloroplast
and different cyanobacterias

compound

average

average

enzyme c_Iuster clu§tgr enzyme path ;22’2; compound cdoir:r?qzl::rd
coefficient coefficient length path length

Chloroplast 0.534371 0.431872 5.07847 19 4.83902 19
Syw 0.59365 0.503954 4.07523 11 3.972854 12
ana 0.590467 0.513945 4.15901 11 3.95608 12
cte 0.577056 0.506881 4.12231 12 3.94473 12
gvi 0.594211 0.518726 4.15974 12 3.95251 12
pma 0.577878 0.487342 4.09658 12 3.92037 12
pmm 0.590459 0.48967 4.06937 10 3.92196 11
pmt 0.581159 0.495484 4.09455 12 3.98362 12
syn 0.590339 0.501971 4.1349 12 3.91225 12
tel 0.593009 0.488283 4.11994 11 3.87589 12




Ratio of topological parameters

Ratio of topological parameters between calvin cycle
—centered subnetwork and whole network
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Network Motifs

We have looked at some global features of real

complex networks:
Short distance between nodes (small-world)
Low number of hubs (scale-free)

High local clustering (modular)



Network Motifs

Now we look at “patterns” In complex networks

Network motif = small subgraphs that are
significantly over-represented

Example of a 3-node motif: A

Do you expect this motif to be over-represented?

First focus on directed networks and look at 3- and 4-node motifs

What is a 2-node motif?

How many 3-node motifs are there?
How many 4-node motifs are there?

Beware of overcounting due to isomorphisms([&Et4)!



Detection of important network
motifs

« Technique:

— construct many random graphs with the same number
of nodes and degree distribution

— count the number of motifs in those graphs

— calculate the Z score: the probability that the same or
larger number of motifs in the real world network
could have occurred in a random one

« Software avallable: mfinder
— http://lwww.weizmann.ac.il/mcb/UriAlon/



Enumeration of directed 3-node motifs

A

X—=Y represents

transcription neuron synaptic ecological
network connection network food web

X D Y

X Y
r>/®\r>/® CC= );:9

gene x geney

=
>

bz
>0 BB

Again, interpretations (what those formalisms actually mean)!

Does X

L g

Y make sense in the food web context?

Exercise: How many undirected 3-node motifs are there?




Example: Feed-forward loop

randomized networks

real network

Count how many times it appears in the real network

Count how many times it appears in “comparable” random networks (through edge-
swapping)

Compute empirical p-value or z-score.



What the Z score means

1 = mean number of times the motif
appeared in the random graph

o standard deviation

/ In the context of motifs:

Z > 0, motif occurs more often
than for random graphs

Z < 0, motif occurs less often
than in random graphs

o

# of times motif

appeared in random graph
|Z| > 1.65, only a 5% chance of

X - Wy random occurrence

Oy



Examples of network motifs
(3 nodes)

* Feed forward loop

— Found in many
transcriptional
regulatory networks

!

N — <€ — X

Appearances in real Appearances in
network randomized network

Structure (mean +s.d.) Pvalue

Coherent feedforward loop 34 4.4+3 P < 0.001
Incoherent feedforward loop 6 2512 P-0.03

coherent incoherent
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X
v
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v
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Different classes of ne wor

frefer different

networ

Network Nodes  Edges | Mreal MNrand=SD  Zscore
Gene regulation X Feed-
(transcription) \ forward

4 loop

V'

7
E. coli 424 519 40 7+3 10
S. cerevisiae* 685 1,052 70 11 +4 14
Neurons X Feed-

V forward

Y loop

\

Z
C. elegan 252 509 125 90 + 10 Fd
Food webs X Three

V chain

¥

\'

Z
Little Rock 92 984 3219 3120 £ 50 2.1
Ythan 83 391 1182 1020 + 20 1.2
St. Martin 42 205 469 450 = 10 NS
Chesapeake 31 67 80 82 +4 NS
Coachella 29 243 279 235+ 12 3.6
Skipwith 25 189 184 150 + 7 hid
B. Brook 25 104 181 130 + 7 74

Neeal Mand£SD  Zscore | Meal MNand+SD  Zscore
M Bi-fan
Z W
203 47+12 13
1812 300 +40 41
X Bi-fan X Bi-
M vV N\ parallel
g ¢ Z
Z W N\ K
WY
127 55+ 13 5.3 227 35+10 20
X Bi-
¥ N parallel
Y Z
N\ ¥
W
7295 2220+ 210 25
1357 230 =50 23
382 130 +£ 20 12
26 5+2 8
181 80 + 20 5
397 80 + 25 13
267 0+7 32




Finding classes on graphs based on

their motif “profiles

Triad Significance Profile
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