
Lab1C GPU/CUDA Implementation of Dense Matrix
Multiplication

In this lab, you will implement the square matrix multiplication algorithms (on GPU
using CUDA and CUBLAS library, and study their performance. The implementation should
include three different versions of the kernels:

1) input matrix A and B are all stored in global memory and kernel computation access data
directly from global memory,

2) input matrix A and B are read into shared memory of thread blocks and computation access
data from shared memory,

3) implementation directly calls sgemm procedure of CUBLAS library to perform the
computation.

The implementation need to include two CUDA kernels codes for version 1 and 2 and codes for
memory allocation and data movement. For version 3, the codes for the implementation are
mainly for memory allocation/data movement and call to the sgemm procedure. For version 2
and 3, you can leverage code in /opt/nvidia/cuda-7.5/samples/0_Simple/(matrixMul and
matrixMulCUBLAS) on fornax, which literately are the solutions for the two kernels. You may
also refer to the CUDA programming guide for the implementation
(http://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory). The algorithms
for kernels will need a 2-dimension topology of both threads of a block and blocks of the grid,
and please choose 16x16 for the block size. Each thread will compute one element of the matrix
C. To simplify, we will assume the matrix size N to be a number of power of 2 (64, 128, 256,
512, …).

Thematmul.cu file provided includes helper functions:

- matmul_base function for the sequential implementation,

- matmul_openmp function that is the openmp-parallelized version for CPU. You should put the
three versions along with the two CUDA kernels in the matmul.cu file. The main functions need
to be modified to include code to drive and time the three implementation, and reports timing
and error information. Arrays A, B and C are all now allocated on the heap on the host using
malloc so we can run the experiments with bigger input.

Thematmul.cu should be compiled using nvcc compiler with “-Xcompiler –fopenmp” to enable
the compilation of the OpenMP version, e.g.

nvcc –Xcompiler -fopenmp matmul.cu -lpthread -lcublas -o matmul

http://docs.nvidia.com/cuda/cuda-c-programming-guide/

Your executable should be able to run with two arguments: the first required argument is for
the matrix size: N for NxN square matrix; the second optional argument is the # of OpenMP
threads for parallelization on CPU, with default value 5 if not provided.

The output of your program should include both the error of computation, time(ms) and FLOP/s
performance. Below is a screenshot of the output for running assignment 2’S code
(is not parallelized yet) so you get idea of what normally we can put in the
output.

To study the performance, you will need to use the nvprof tool and please refer to the
documentation page (http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-
overview) for how to use this profiler.

To profile a specific CUDA implementation, you may need to comment off other kernels calls in
the main program.

The performance results collected for the report should be done on fornax.cse.sc.edu. There
are four GPUs that you can use with device id 0, 1,2,3. By default, you all will use GPU 0 and you
can use cudaSetDevice(1) call to select a different GPU to use. Please random choose a GPU to
use so we do not all work on the same device.

Submission: The submission should include two files: the matmul.cu file that contains your
implementations and a max 3-page report. The report should include:

1. Description on your implementation of the three versions.

2. One performance figure that reports the results for running the code with N=512, 1024,
and 2048 matrix on fornax. The figure should show the execution time for the openmp
version (matmul_openmp) that uses all the CPU cores of the machine (use lscpu
command to check the total number of CPUs), and the execution time (both the kernel
time and memory allocation/data movement time) of the three GPU versions.

3. One performance figure that shows the breakdown of the execution time for N=2048 of
the three versions of the GPU kernels. The breakdown figure will show at least three
timing information, the execution time for data movement from host to the GPU, kernel
execution time, and time for data copy back. Ideally, the percentage of each of the

http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html

breakdown over the total execution time will give more information, but I hope the
absolute value together will show that. You should collect that information using nvprof

4. Explanation of the performance results shown in the two figures. You report should
include a detailed specification of the machine/GPU and software environment you are
using, e.g. CPU vendor/model, the number of CPU cores, CPU memory size, GPU
model/vendor, memory size, # of SM/cores, CUDA SDK (nvcc) version, gcc version (since
nvcc use it) and the compiler flags used to build the executable. “cat /proc/cpuinfo” and
“cat /proc/meminfo” commands will give you CPU/mem info and deviceQuery
executable from /usr/local/cuda/samples/1_Utilities will print out the GPU information.
The purpose of this information is for people who may want to do the same experiment
as you.

The assignment3-plot.xlsx file will help you to generate the figures from the results you will
collect. While the development can be done from your laptop or any other computers, the
results in the report should be collected from the cluster. Please be noted that the machine
is shared resource, overloaded use of the machine may cause incorrect performance results.

For the CUBLAS sgemm implementation, the following paper discussed in details the
optimization applied to the library: “Vasily Volkov and James W. Demmel. 2008.
Benchmarking GPUs to tune dense linear algebra. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (SC '08). IEEE Press, Piscataway, NJ, USA, , Article 31 , 11
pages.

Grading:

Functions implementations

1. 40 points for implementation.

2. Report: 60 points.

For non-compliable code, you only receive max 60% of function implementations points. For
compliable, but with execution errors and incorrectness, you receive max 70% of function
implementation points. Please refer to the next page for the policy of academic conduct.

More info for the assignment:

The GPU needs to be warmed up to collect realistic performance data. The way of doing it is simple: for
each version, call the function first without timing it, and then call it with timer turned on. See below:

matmul_cuda_v1_vanilla (...); /* warm up the GPU */

elapsed_v1 = read_timer();

matmul_cuda_v1_vanilla(...)

elapsed_v1 = (read_timer() - elapsed_v1);

matmul_cuda_v2_shmem (...); /* warm up the GPU */

elapsed_v2 = read_timer();

matmul_cuda_v2_shmem(...)

elapsed_v2 = (read_timer() - elapsed_v2);

matmul_cuda_v3_cublas (...); /* warm up the GPU */

elapsed_v3 = read_timer();

matmul_cuda_v3_shmem(...)

elapsed_v3 = (read_timer() - elapsed_v3);

To produce second figures using nvprof, for each version, you need to comment the other two versions in
your code (both the warm call and the call to be timed), but leave the warm up call for this version, rebuild
it and run it with "nvprof ./matmul 2048". It should produce something similar to the following. You will
collect the "time" column of the first three rows (kernel time, HtoD time and DtoH time, and put them in the
sheet provided to produce the breakdown timing figures.

==28987== Profiling result:

Time(%) Time Calls Avg Min Max Name

95.30% 8.1613ms 31 263.27us 259.57us 267.76us void magma_lds128_sgemm_kernel<bool=0,
bool=0, int=6, int=5, int=3, int=3, int=3>(int, int, int, float const *, int, float const *, int, float*, int, int, int,
float const *, float const *, float, float, int)

3.21% 275.17us 3 91.722us 1.5360us 137.15us [CUDA memcpy HtoD]

1.49% 127.58us 1 127.58us 127.58us 127.58us [CUDA memcpy DtoH]

==28987== API calls:

Time(%) Time Calls Avg Min Max Name

46.87% 169.19ms 7 24.170ms 15.572us 168.45ms cudaFree

25.98% 93.788ms 1 93.788ms 93.788ms 93.788ms cudaDeviceReset

