Meta-analysis of Genome-wide Association Studies

・ロト・日本・モト・モート ヨー うへで

Effect size

Encodes relationship of interest into a common index

- Must be:
 - comparable across studies
 - independent of sample size
 - have a computable standard error
- Many different effect size indices
- Multiple methods of computing each
- Most common:
 - Correlation coefficient (r)
 - Standard mean difference (d)
 - Odds ratio (OR)
 - Risk ratio (RR)

Computing effect sizes

- Effect size can be computed from provided information:
 - from other statistics like t-test, p-value, descriptive statistics, etc.
 - from manipulation of data such as collasing across subgroups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some studies simply do not provide necessary information.

Standardized mean difference

$$ES_{sm} = \frac{\bar{x}_1 - \bar{x}_2}{s_{pooled}} \tag{1}$$

 Example: meta-analysis of the effectiveness of therapy in reducing high blood pressure.

$$ES_{sm} = t \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$
(2)

► inferred from t-test.

$$ES_{sm} = \frac{2r}{\sqrt{1-r^2}}$$
(3)

based on a correlation

$$ES_{sm} = \ln(\frac{ad}{bc})\frac{\sqrt{3}}{\pi} \tag{4}$$

Based on 2-by-2 contingency table (dichotomous outcome; logit method)

Odds ratio (OR)

- Dichotomous outcome
- Data can be represented in a 2×2 contingency table:

	ØА	ØВ
Case	а	b
Control	С	d

OR can be computed as:

$$ES_{OR} = \frac{ad}{bc} \tag{5}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Basics of meta-analysis

Goals:

- Describe the distribution, including its mean
- Establish a confidence interval around the mean
- TEst that the mean differs from zero.
- Test whether studies are homogeneous.
- Explore the relationship between study features and effect size.

Determining the mean effect size

- > Problem: some effect sizes are more accurate than others
- What we need is a measure of precision
- **Standard error** is a direct measure of precision.
- Hedges and Olkin solution:
 - Weighted by the inverse variance
 - Provides a statistical basis for (1) standard error of the mean effect size; (2) confidence intervals; (3) Homogeneity testing

Some preliminary transformations

Small sample size bias correction on standardized mean difference:

$$ES'_{sm} = (1 - \frac{3}{4N - 9})ES_{sm}$$
 (6)

Fisher's Z_r-transform of correlations (ES_r)

$$ES_{Zr} = \frac{1}{2}\log(\frac{1+r}{1-r})$$
 (7)

Log-transform of OR:

$$ES_{\ln(OR)} = \log(OR) \tag{8}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse variance weights

Standard mean difference *ES_{sm}*:

$$se_{sm} = \sqrt{\frac{n_1 + n_2}{n_1 n_2} + \frac{ES_{sm}^2}{2(n_1 + n_2)}}$$
 (9)

Correlation ES_r (the Fisher's Z):

$$se_r = \frac{1}{\sqrt{n-3}} \tag{10}$$

• Odds ratio
$$se_{OR} = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$
(11)

Inverse variance weight w:

$$w = \frac{1}{se^2} \tag{12}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Now the data is ready...

At this point, we have for each study:

- An effect size
- An inverse variance weight
- Problem: statistical models assume independence
- Only include one effect size per study (or independent sample)
- Multiple analyses for different subsets of independent effects:

- Different outcome constructs
- Different time periods

Summary effect size

The meta-analysis mean effect size can be computed as the inverse-variance weighted mean effect size:

$$\overline{ES} = \frac{\sum w_i ES_i}{\sum w_i} \tag{13}$$

where ES_i is the effect size for study *i* and w_i is the inverse variance weight. Standard error of the mean effect size is:

$$se_{\overline{ES}} = \frac{1}{\sum w_i}$$
 (14)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some basic inferential statistics

Confidnece intervals of the mean effect size:

$$\overline{ES}_{lower} = \overline{ES} - se_{\overline{ES}} \times 1.96$$
(15)
$$\overline{ES}_{upper} = \overline{ES} + se_{\overline{ES}} \times 1.96$$
(16)

A z-test can be performed as:

$$z = \frac{\overline{ES}}{se_{\overline{ES}}} \tag{17}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Forest plot

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 めんぐ

Funnel plot

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - の�?

Homogeneity testing

- Homogeneity analysis tests whether the assumption that all of the effect size are estimating the same population mean is a reasonable assumption.
- If homogeneity is rejected, the distribution of effect sizes is assumed to be heterogeneous.
 - A single mean *ES* is not a good descriptor of the distribution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- There are real between-study difference.
- Three options:
 - model between-study difference
 - fit a random-effect model (REM)
 - do both

Computation of the homogeneity Q statistic

Q is simply a weighted sums-of-squares:

$$Q = \sum w_i (ES_i - \overline{ES})^2$$
(18)

An equivalent formulae:

$$Q = \sum w_i E S_i^2 - \frac{(\sum w_i E S_i)^2}{\sum w_i}$$
(19)

• $Q \sim \chi^2_{k-1}$, where k is the number of effect sizes.

Alternative to Q

 Q is statistically under-powered when the number of studies is low and when the sample size within the studies is low

$$I^2 = 100\% \times \frac{Q - df}{Q} \tag{20}$$

- Larger values of I^2 , the more heterogeneity
 - 75%: large heterogeneity
 - ▶ 50%: moderate heterogeneity
 - 25%: low heterogeneity

Random vs. fixed effects models

- Fixed effect model (FEM) assumes:
 - There is one true population effect that all studies are estimating.
 - all of the variability between effect sizes is due to sampling error.
- Random effects model (REM) assumes:
 - There are multiple (i.e. a distribution) of population effects that the studies are estimating

- variability between effect sizes is due to sampling error + variability in the population of effects
- Known versus unknown influences of true effects
- Mixture (mixed) models
- Current advise: assume random effects model a priori

Random effects model

- ► FEM: weights are a function of sampling error.
- REM: weights are a function of sampling error + study-level variability
- Thus, a new set of weights should be used for REM
- You need to compute the random effects variance component τ²:

$$\tau^2 = \frac{Q - df_Q}{\sum w_i - \frac{\sum w_i^2}{\sum w_i}}$$
(21)

Then you can re-compute the inverse variance weights w_i:

$$w_i = \frac{1}{se^2 + \tau^2} \tag{22}$$

 Now use the new weights to re-compute the meta- analysis results.

FEM vs REM: How to choose?

- REMs become FEMs when distributions are homogeneous
- Assumptions of FEMs are usually unreasonable, which will lead to under-estimated standard error and too narrow CI.
- General advise within meta-analysis literature: use random effects models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Area of active debate among statisticians.

Publication bias

- Statistically significant effects are more likely to be published than non-significant effects.
- Threat to the validity of meta-analysis (and any other method of systematic review)
- The solution is to find and include unpublished studies that meet eligibility criteria, but this is not practical under most of the conditions.
- Examine difference between published and unpublished studies.
- Statistical approaches to assessing publication bias:
 - Funnel plot: scatterplot of effect size against standard error of effect size
 - Trim-and-fill method

Questions