
Meta-analysis of Genome-wide Association
Studies



Effect size

I Encodes relationship of interest into a common index
I Must be:

I comparable across studies
I independent of sample size
I have a computable standard error

I Many different effect size indices

I Multiple methods of computing each
I Most common:

I Correlation coefficient (r)
I Standard mean difference (d)
I Odds ratio (OR)
I Risk ratio (RR)



Computing effect sizes

I Effect size can be computed from provided information:
I from other statistics like t-test, p-value, descriptive statistics,

etc.
I from manipulation of data such as collasing across subgroups.

I Some studies simply do not provide necessary information.



Standardized mean difference

ESsm =
x̄1 − x̄2
spooled

(1)

I Example: meta-analysis of the effectiveness of therapy in
reducing high blood pressure.

ESsm = t
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I inferred from t-test.
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I based on a correlation
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I Based on 2-by-2 contingency table (dichotomous outcome;
logit method)



Odds ratio (OR)

I Dichotomous outcome

I Data can be represented in a 2× 2 contingency table:

gA gB
Case a b
Control c d

I OR can be computed as:

ESOR =
ad

bc
(5)



Basics of meta-analysis

I Goals:
I Describe the distribution, including its mean
I Establish a confidence interval around the mean
I TEst that the mean differs from zero.
I Test whether studies are homogeneous.
I Explore the relationship between study features and effect size.



Determining the mean effect size

I Problem: some effect sizes are more accurate than others

I What we need is a measure of precision

I Standard error is a direct measure of precision.
I Hedges and Olkin solution:

I Weighted by the inverse variance
I Provides a statistical basis for (1) standard error of the mean

effect size; (2) confidence intervals; (3) Homogeneity testing



Some preliminary transformations

I Small sample size bias correction on standardized mean
difference:

ES ′sm = (1− 3

4N − 9
)ESsm (6)

I Fisher’s Zr -transform of correlations (ESr )

ESZr =
1

2
log(

1 + r

1− r
) (7)

I Log-transform of OR:

ESln(OR) = log(OR) (8)



Inverse variance weights

I Standard mean difference ESsm:

sesm =

√
n1 + n2
n1n2

+
ES2

sm

2(n1 + n2)
(9)

I Correlation ESr (the Fisher’s Z ):

ser =
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n − 3

(10)

I Odds ratio
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I Inverse variance weight w :

w =
1

se2
(12)



Now the data is ready...

I At this point, we have for each study:
I An effect size
I An inverse variance weight

I Problem: statistical models assume independence

I Only include one effect size per study (or independent sample)
I Multiple analyses for different subsets of independent effects:

I Different outcome constructs
I Different time periods



Summary effect size

The meta-analysis mean effect size can be computed as the
inverse-variance weighted mean effect size:

ES =

∑
wiESi∑
wi

(13)

where ESi is the effect size for study i and wi is the inverse
variance weight. Standard error of the mean effect size is:

seES =
1∑
wi

(14)



Some basic inferential statistics

I Confidnece intervals of the mean effect size:

ES lower = ES − seES × 1.96 (15)

ESupper = ES + seES × 1.96 (16)

I A z-test can be performed as:

z =
ES

seES
(17)



Forest plot



Funnel plot



Homogeneity testing

I Homogeneity analysis tests whether the assumption that all of
the effect size are estimating the same population mean is a
reasonable assumption.

I If homogeneity is rejected, the distribution of effect sizes is
assumed to be heterogeneous.

I A single mean ES is not a good descriptor of the distribution.
I There are real between-study difference.
I Three options:

I model between-study difference
I fit a random-effect model (REM)
I do both



Computation of the homogeneity Q statistic

I Q is simply a weighted sums-of-squares:

Q =
∑

wi (ESi − ES)2 (18)

I An equivalent formulae:

Q =
∑

wiES
2
i −

(
∑

wiESi )
2∑
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(19)

I Q ∼ χ2
k−1, where k is the number of effect sizes.



Alternative to Q

I Q is statistically under-powered when the number of studies is
low and when the sample size within the studies is low

I 2 = 100%× Q − df

Q
(20)

I Larger values of I 2, the more heterogeneity
I 75%: large heterogeneity
I 50%: moderate heterogeneity
I 25%: low heterogeneity



Random vs. fixed effects models

I Fixed effect model (FEM) assumes:
I There is one true population effect that all studies are

estimating.
I all of the variability between effect sizes is due to sampling

error.

I Random effects model (REM) assumes:
I There are multiple (i.e. a distribution) of population effects

that the studies are estimating
I variability between effect sizes is due to sampling error +

variability in the population of effects

I Known versus unknown influences of true effects

I Mixture (mixed) models

I Current advise: assume random effects model a priori



Random effects model

I FEM: weights are a function of sampling error.

I REM: weights are a function of sampling error +
study-level variability

I Thus, a new set of weights should be used for REM

I You need to compute the random effects variance
component τ2:

τ2 =
Q − dfQ∑
wi −

∑
w2
i∑

wi

(21)

I Then you can re-compute the inverse variance weights wi :

wi =
1

se2 + τ2
(22)

I Now use the new weights to re-compute the meta- analysis
results.



FEM vs REM: How to choose?

I REMs become FEMs when distributions are homogeneous

I Assumptions of FEMs are usually unreasonable, which will
lead to under-estimated standard error and too narrow CI.

I General advise within meta-analysis literature: use random
effects models

I Area of active debate among statisticians.



Publication bias

I Statistically significant effects are more likely to be published
than non-significant effects.

I Threat to the validity of meta-analysis (and any other method
of systematic review)

I The solution is to find and include unpublished studies that
meet eligibility criteria, but this is not practical under most of
the conditions.

I Examine difference between published and unpublished
studies.

I Statistical approaches to assessing publication bias:
I Funnel plot: scatterplot of effect size against standard error of

effect size
I Trim-and-fill method



Questions


