Meta-analysis of Genome-wide Association **Studies**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Effect size

 \triangleright Encodes relationship of interest into a common index

- \blacktriangleright Must be:
	- \triangleright comparable across studies
	- \blacktriangleright independent of sample size
	- \blacktriangleright have a computable standard error
- \blacktriangleright Many different effect size indices
- \triangleright Multiple methods of computing each
- \blacktriangleright Most common:
	- \triangleright Correlation coefficient (r)
	- Standard mean difference (d)
	- \triangleright Odds ratio (OR)
	- Risk ratio (RR)

Computing effect sizes

- \triangleright Effect size can be computed from provided information:
	- \triangleright from other statistics like t-test, p-value, descriptive statistics, etc.
	- \triangleright from manipulation of data such as collasing across subgroups.

KORK ERKER ADE YOUR

 \triangleright Some studies simply do not provide necessary information.

Standardized mean difference

$$
ES_{sm} = \frac{\bar{x}_1 - \bar{x}_2}{s_{pooled}} \tag{1}
$$

 \triangleright Example: meta-analysis of the effectiveness of therapy in reducing high blood pressure.

$$
ES_{sm} = t\sqrt{\frac{n_1 + n_2}{n_1 n_2}}\tag{2}
$$

 \blacktriangleright inferred from t-test.

$$
ES_{sm} = \frac{2r}{\sqrt{1 - r^2}}\tag{3}
$$

 \blacktriangleright based on a correlation

$$
ES_{sm} = \ln\left(\frac{ad}{bc}\right)\frac{\sqrt{3}}{\pi} \tag{4}
$$

▶ Based on 2-by-2 contingency table (dichotomous outcome; logit method)**K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Odds ratio (OR)

- \blacktriangleright Dichotomous outcome
- \blacktriangleright Data can be represented in a 2 \times 2 contingency table:

 \triangleright OR can be computed as:

$$
ES_{OR} = \frac{ad}{bc} \tag{5}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Basics of meta-analysis

\blacktriangleright Goals:

- \triangleright Describe the distribution, including its mean
- \triangleright Establish a confidence interval around the mean
- \triangleright TEst that the mean differs from zero.
- \blacktriangleright Test whether studies are homogeneous.
- \blacktriangleright Explore the relationship between study features and effect size.

Determining the mean effect size

- \triangleright Problem: some effect sizes are more accurate than others
- \triangleright What we need is a measure of precision
- \triangleright Standard error is a direct measure of precision.
- \blacktriangleright Hedges and Olkin solution:
	- \triangleright Weighted by the inverse variance
	- Provides a statistical basis for (1) standard error of the mean effect size; (2) confidence intervals; (3) Homogeneity testing

Some preliminary transformations

 \triangleright Small sample size bias correction on standardized mean difference:

$$
ES'_{sm} = (1 - \frac{3}{4N - 9})ES_{sm}
$$
 (6)

 \blacktriangleright Fisher's Z_r -transform of correlations (ES_r)

$$
ES_{Zr} = \frac{1}{2}\log(\frac{1+r}{1-r})\tag{7}
$$

 \blacktriangleright Log-transform of OR:

$$
ES_{\ln(OR)} = \log(OR) \tag{8}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Inverse variance weights

Standard mean difference ES_{sm} :

$$
se_{sm} = \sqrt{\frac{n_1 + n_2}{n_1 n_2} + \frac{ES_{sm}^2}{2(n_1 + n_2)}}
$$
(9)

Gorrelation ES_r (the Fisher's Z):

$$
se_r = \frac{1}{\sqrt{n-3}}\tag{10}
$$

► Odds ratio

$$
se_{OR} = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}
$$
(11)

Inverse variance weight w :

$$
w = \frac{1}{se^2} \tag{12}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Now the data is ready...

- \triangleright At this point, we have for each study:
	- \blacktriangleright An effect size
	- \blacktriangleright An inverse variance weight
- \triangleright Problem: statistical models assume independence
- \triangleright Only include one effect size per study (or independent sample)
- \triangleright Multiple analyses for different subsets of independent effects:

- \triangleright Different outcome constructs
- \triangleright Different time periods

Summary effect size

The meta-analysis mean effect size can be computed as the inverse-variance weighted mean effect size:

$$
\overline{ES} = \frac{\sum w_i ES_i}{\sum w_i}
$$
 (13)

where ES_i is the effect size for study i and w_i is the inverse variance weight. Standard error of the mean effect size is:

$$
se_{\overline{ES}} = \frac{1}{\sum w_i} \tag{14}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Some basic inferential statistics

 \triangleright Confidnece intervals of the mean effect size:

$$
\frac{\overline{ES}_{lower}}{\overline{ES}_{upper}} = \frac{\overline{ES} - se_{\overline{ES}} \times 1.96}{\overline{ES} + se_{\overline{ES}} \times 1.96} \tag{15}
$$

 \triangleright A z-test can be performed as:

$$
z = \frac{\overline{ES}}{se_{\overline{ES}}} \tag{17}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Forest plot

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Funnel plot

K ロ K K (메 K K X B K X B H X B K O Q Q C

Homogeneity testing

- \blacktriangleright Homogeneity analysis tests whether the assumption that all of the effect size are estimating the same population mean is a reasonable assumption.
- If homogeneity is rejected, the distribution of effect sizes is assumed to be heterogeneous.
	- \triangleright A single mean ES is not a good descriptor of the distribution.

- \blacktriangleright There are real between-study difference.
- \blacktriangleright Three options:
	- \blacktriangleright model between-study difference
	- \triangleright fit a random-effect model (REM)
	- \blacktriangleright do both

Computation of the homogeneity Q statistic

 \triangleright Q is simply a weighted sums-of-squares:

$$
Q = \sum w_i (ES_i - \overline{ES})^2 \tag{18}
$$

 \blacktriangleright An equivalent formulae:

$$
Q = \sum w_i ES_i^2 - \frac{(\sum w_i ES_i)^2}{\sum w_i}
$$
 (19)

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

► $Q \sim \chi^2_{k-1}$, where k is the number of effect sizes.

Alternative to Q

 \triangleright Q is statistically under-powered when the number of studies is low and when the sample size within the studies is low

$$
I^2 = 100\% \times \frac{Q - df}{Q} \tag{20}
$$

- Example 12, the more heterogeneity
	- \blacktriangleright 75%: large heterogeneity
	- \blacktriangleright 50%: moderate heterogeneity
	- \blacktriangleright 25%: low heterogeneity

Random vs. fixed effects models

- \blacktriangleright Fixed effect model (FEM) assumes:
	- \triangleright There is one true population effect that all studies are estimating.
	- \triangleright all of the variability between effect sizes is due to sampling error.
- \triangleright Random effects model (REM) assumes:
	- \triangleright There are multiple (i.e. a distribution) of population effects that the studies are estimating

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright variability between effect sizes is due to sampling error $+$ variability in the population of effects
- \triangleright Known versus unknown influences of true effects
- \blacktriangleright Mixture (mixed) models
- ▶ Current advise: assume random effects model a priori

Random effects model

- \blacktriangleright FEM: weights are a function of sampling error.
- REM: weights are a function of sampling error $+$ study-level variability
- \triangleright Thus, a new set of weights should be used for REM
- \triangleright You need to compute the random effects variance component τ^2 :

$$
\tau^2 = \frac{Q - df_Q}{\sum w_i - \frac{\sum w_i^2}{\sum w_i}}
$$
(21)

Then you can re-compute the inverse variance weights w_i :

$$
w_i = \frac{1}{se^2 + \tau^2} \tag{22}
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright Now use the new weights to re-compute the meta- analysis results.

FEM vs REM: How to choose?

- \triangleright REMs become FEMs when distributions are homogeneous
- \triangleright Assumptions of FEMs are usually unreasonable, which will lead to under-estimated standard error and too narrow CI.
- \triangleright General advise within meta-analysis literature: use random effects models

KORK ERKER ADE YOUR

 \triangleright Area of active debate among statisticians.

Publication bias

- \triangleright Statistically significant effects are more likely to be published than non-significant effects.
- \triangleright Threat to the validity of meta-analysis (and any other method of systematic review)
- \triangleright The solution is to find and include unpublished studies that meet eligibility criteria, but this is not practical under most of the conditions.
- \blacktriangleright Examine difference between published and unpublished studies.
- \triangleright Statistical approaches to assessing publication bias:
	- \triangleright Funnel plot: scatterplot of effect size against standard error of effect size

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \blacktriangleright Trim-and-fill method

Questions

K ロ K K (메 K K X B K X B H X B K O Q Q C