
Section 2:High-Throughput
Sequencing Data

Maoying Wu
BI390 2019 Fall

Outline
• Sequencing technologies

– From Sanger to 3rd generation sequencing

• Sequence representation & quality assessment
– Fastq file
– FASTQC: quality assessment

• Short-read apping algorithms
– Spaced seed
– Borrows Wheeler transformation & LF mapping
– Suffix Tree and Suffix Array

• Sequence mapping representation
– SAM / BAM formats
– BED / BigBED formats
– VCF / BCF format

2BI390: Bioinformatics Workshop

Outline
• Sequencing technologies.
• Fastq and FASTQC.
• Sequence mapping algorithms:

– Spaced seed.
– Borrows-Wheeler transformation & LF mapping.
– Suffix Tree.

• Alignment output: SAM and BED.

3BI390: Bioinformatics Workshop

Sanger sequencing – Step 1

4

• Add one-stranded DNA sequence to four test
tubes.

• Each tube contain all dNTPs + one ddNTP.

BI390: Bioinformatics Workshop

Sanger sequencing – Step 2

5

• Interpret results from gel eletrophoresis.

BI390: Bioinformatics Workshop

Automated Sanger sequencing

• Sanger Sequencing Summary: 384 * 1kb / 3
hours 6BI390: Bioinformatics Workshop

Illumina – Cluster Generation

7BI390: Bioinformatics Workshop

Illumina – Sequencing
Process

8

1. Incorporate all 4
nucleotides, each label
with a different dye

2. Wash, 4-color imaging

3. Cleave dye and
terminating groups, wash

4. Repeat cycles

BI390: Bioinformatics Workshop

Illumina – Sequencing Process

9

Cycle 1

2

3

4
5

6

– https://www.youtube.com/
watch?v=fCd6B5HRaZ8

BI390: Bioinformatics Workshop

Third Generation
• Single molecule sequencing: no amplification.
• Fewer but much longer reads.
• Good for long reads, but not for read count

applications.
• Still under development.

– http://www.youtube.com/watch?v=v8p4ph2MAvI
– https://www.youtube.com/watch?v=3UHw22hBpAk

10BI390: Bioinformatics Workshop

High Throughput Sequencing
• Big (data), fast (speed), cheap (cost), flexible

(applications).
• Bioinformatic analyses become the bottleneck.

11BI390: Bioinformatics Workshop

Outline
• Sequencing technologies.
• Fastq and FASTQC.
• Sequence mapping algorithms:

– Spaced seed.
– Borrows-Wheeler transformation & LF mapping.
– Suffix Tree.

• Alignment output: SAM and BED.

12BI390: Bioinformatics Workshop

FASTQ File
• Format:

1. Sequence ID.
2. Sequence.
3. Quality ID.
4. Quality score.

13

@HWI-EAS305:1:1:1:991#0/1
GCTGGAGGTTCAGGCTGGCCGGATTTAAACGT
AT
+HWI-EAS305:1:1:1:991#0/1
MVXUWVRKTWWULRQQMMWWBBBBBBBBBBBB
BB
@HWI-EAS305:1:1:1:201#0/1
AAGACAAAGATGTGCTTTCTAAATCTGCACTAA
T
+HWI-EAS305:1:1:1:201#0/1
PXX[[[[XTXYXTTWYYY[XXWWW[TMTVXWBBB

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

Worst quality Best quality

• Quality:
– ASCII of: sequence quality + 33.
– -10 log10 Pr(base is wrongly sequenced).

BI390: Bioinformatics Workshop

Why Quality Control?

14

• Sequencer output:
– Sequence “reads” + quality = FASTQ file.

• Is the quality of my sequenced data OK?
• If something is wrong can I fix it?
• Problem: FASTQ are massive files!
• Common tool: FASTQC.

– http://www.bioinformatics.babraham.ac.uk/projects/fas
tqc/

BI390: Bioinformatics Workshop

FASTQC: Per Base Sequence
Quality

15

Good quality! Poor quality!

• Consistent.
• High-quality along

the read.

• High Variance.
• Quality decreases

at the 3'-end.
BI390: Bioinformatics Workshop

FASTQC: Per Sequence Quality Distribution

16

Good quality! Poor quality!

• Most are high-
quality
sequences.

• Distribution is not
uniform.

• Presence of low
quality reads.

BI390: Bioinformatics Workshop

FASTQC: Nucleotide Content Per Position

17

Good quality! Poor quality!

• Smooth over
length.

• Sequence-
position bias.

BI390: Bioinformatics Workshop

FASTQC: Per Sequence GC Content

18

Good quality! Poor quality!

• Fits with
expectation.

• Does not fit with
expectation.

BI390: Bioinformatics Workshop

Outline
• Sequencing technologies.
• Fastq and FASTQC.
• Sequence mapping algorithms:

– Spaced seed.
– Borrows-Wheeler transformation & LF mapping.
– Suffix Tree.

• Alignment output: SAM and BED.

19BI390: Bioinformatics Workshop

Read Mapping

• Smith-Waterman algorithm:
– Deterministic approach using dynamic programming.

• Mapping hundreds of millions of reads back to the
reference genome is both computation and memory
intensive and thus slow.

• Most mappers allow ~2 mismatches within first 30bp
(428 could still uniquely identify most 30bp
sequences in a 3GB genome), slower when
allowing indels. 20

Sequence DB
 e.g. Genome

Query

BI390: Bioinformatics Workshop

Spaced Seed
Alignment

• Tags and tag-sized
pieces of reference are
cut into small “seeds.”

• Pairs of spaced seeds
are stored in an index.

• Look up spaced seeds for
each tag.

• For each “hit,” confirm the
remaining positions.

• Report results to the user.

21BI390: Bioinformatics Workshop

BLAST Algorithm Steps
• Altschul et al.

– http://www.sciencedirect.com/science/article/pii/S0022
283605803602

– https://academic.oup.com/nar/article/25/17/3389/1061
651/

• Break DB sequences into k-mer words and hash
their locations to speed later searches.

• For each k-mer in query, find possible DB k-mers
that matches well with it.

• Only words with  T cutoff score are kept.

22BI390: Bioinformatics Workshop

BLAST Algorithm Steps
• For each DB sequence with a high scoring

word, try to extend it in both ends.
– Form HSP (High-scoring Segment Pairs).

• Keep only statistically significant HSPs.
– Based on the scores of

aligning 2 random seqs.
• Use Smith-Waterman*

algorithm to join the
HSPs and get optimal
alignment.

23BI390: Bioinformatics Workshop

• *https://en.wikipedia.org/wiki/Smith%E
2%80%93Waterman_algorithm

• *https://www.youtube.com/watch?v=IV
RSFaGCGeE

Outline
• Sequencing technologies.
• Fastq and FASTQC.
• Sequence mapping algorithms:

– Spaced seed.
– Borrows-Wheeler transformation & LF mapping.
– Suffix Tree.

• Alignment output: SAM and BED.

24BI390: Bioinformatics Workshop

Burrows-Wheeler Alignment

25

• Two most widely used tools:
– bwa (http://bio-bwa.sourceforge.net/).
– bowtie (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml).

BI390: Bioinformatics Workshop

Burrows-
Wheeler

• Use Burrows-Wheeler transform
to store entire reference genome
as a lookup index.

• Align tag base by base from the
end.

• All active locations are reported.
• If no match is found, then back up

and try a substitution.
• Ben Langmead videos:

– https://www.youtube.com/watch?v=4
n7NPk5lwbI

– https://www.youtube.com/watch?v=k
vVGj5V65io

Trapnell & Salzberg, Nat Biotech 2009.
26BI390: Bioinformatics Workshop

Burrows-Wheeler Transform
• Reversible permutation used originally in compression.
• Database sequence T = acaacg$

Burrows
Wheeler
Matrix

Last column

BWT(T)

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

27BI390: Bioinformatics Workshop

Burrows-Wheeler Transform
• Why BWT is useful for compression?

– Once BWT(T) is built, everything else is discarded.
– First column of BWM can be derived by sorting BWT(T).
– Characters will tend to cluster together:

• BWT(T) = gc$aaac -> compression -> gc$3ac

• How can we recreate T using BWT(T)?
– LF mapping.

• How to use BWT(T) to retrieve alignments,
given a query sequence Q?

28BI390: Bioinformatics Workshop

BWT: LF Mapping
• Property that makes BWT(T) reversible is “LF

Mapping”.
– ith occurrence of a character in Last column is the same

text occurrence as the ith occurrence in First column.

T

BWT(T)

Burrows Wheeler
Matrix

Rank: 2
(2nd ‘a’ in Last column)

Rank: 2
(2nd ‘a’ in First column)

29BI390: Bioinformatics Workshop

• To recreate T from BWT(T), repeatedly apply rule:
T = BWT[LF(i)] + T; i = LF(i)
– Where LF(i) maps row i to row whose first char

corresponds to i row's last char using LF Mapping.

Final T

BWT: LF Mapping

30BI390: Bioinformatics Workshop

Recovering T from bwt(T)
def recover(bwt):

“””recover original string from its bwt transform
pos = 0
ans = endChar # $-terminated here
for in range(1, bwt.length):

ans = bwt.charAt(pos) + ans # update T
pos = inverse(pos, bwt) # update pos LF

return ans

BI390: Bioinformatics Workshop 31

Recovering T from bwt(T)
def inverse(pos, bwt):

“””update the position from the current position
ch = bwt.charAt(pos)
chCode = ch.chCodeAt(0)
return rank[chCode] + occ(ch, bwt, pos)

rank[chCode] 表示的是bwt中字母表中在chCode之前的字
母个数。

def occ(ch, bwt, pos):
“”” return the occurrence of ch in bwt before pos
pass BI390: Bioinformatics Workshop 32

• Query Q = aac; DB T = acaacg$; BWT(T) = gc$aaac
• To match Q in T using BWT(T), repeatedly apply rule:

top = LF(top, qc); bot = LF(bot, qc)
– Where qc is the next character in Q (right-to-left) and

LF(i, qc) maps row i to the row whose first character
corresponds to i’s last character as if it were qc.

qc=‘c’

top=5

bot=6
The last
character of row
5,6 is ‘a’

qc=‘a’

top=LF(5,’a’)=3
bot=LF(6,’a’)=4

BWT(T) to retrieve alignments

33BI390: Bioinformatics Workshop

• To match Q in T using BWT(T), repeatedly apply rule:
top = LF(top, qc); bot = LF(bot, qc)
– Where qc is the next character in Q (right-to-left) and

LF(i, qc) maps row i to the row whose first character
corresponds to i’s last character as if it were qc.

The last
character of row
3,4 is ‘a’,’$’

qc=‘a’

top=LF(3,’a’)=2
bot=LF(4,’a’)=2

BWT(T) to retrieve alignments

34BI390: Bioinformatics Workshop

• In progressive rounds, top & bot delimit the
range of rows beginning with progressively
longer suffixes of Q (from right to left).

• If range becomes empty the query suffix (and
therefore the query) does not occur in the text.

• If no match, instead of giving up, try to
“backtrack” to a previous position and try a
different base (mismatch, much slower).

BWT(T) to retrieve alignments

35BI390: Bioinformatics Workshop

• How to recover the query sequence (Q)
alignment position in the reference sequence T?
– LF mapping!

BWT(T) to retrieve alignments

T = acaacg$
Q = aac

3

1 2 3

Break36BI390: Bioinformatics Workshop

Outline
• Sequencing technologies.
• Fastq and FASTQC.
• Sequence mapping algorithms:

– Spaced seed.
– Borrows-Wheeler transformation & LF mapping.
– Suffix Tree.

• Alignment output: SAM and BED.

37BI390: Bioinformatics Workshop

• Used by alignment tools such as STAR:
– https://academic.oup.com/bioinformatics/article/29/1/15/27

2537/
• Very fast and accurate for mapping “paired end”

sequences and high read counts.
• O(n) time to build.

– n = genome length.
• O(mlogn) time to search.

– m = query length.
• Genome index is big.

– ~15GB
38

Suffix Tree

BI390: Bioinformatics Workshop

Suffix Tree (Example)
Let s=abab, a suffix tree of s is a compressed trie* of all suffixes of
s=abab$

{
 $
 b$
 ab$
 bab$
 abab$
}

*https://en.wikiped
ia.org/wiki/Trie

$ab

abab$ ab$$
$

root
$

$b

$b
bab$

ab$

ab$

• Parallel between sufix trees
and BWT.

• Ben Langmead videos:
– https://www.youtube.com/watch?

v=hLsrPsFHPcQ&t=23s

$

$b

ab$

bab$

abab$

$

a

a

a

$

$

$

$

b

b

b

b

rootSuffixes from s:
Suffixes trie: Suffixes tree:

39BI390: Bioinformatics Workshop

Outline
• Sequencing technologies.
• Fastq and FASTQC.
• Sequence mapping algorithms:

– Spaced seed.
– Borrows-Wheeler transformation & LF mapping.
– Suffix Tree.

• Alignment output: SAM and BED.

40BI390: Bioinformatics Workshop

SAM File - Header
• @HD – Header line.
• @SQ – Reference genome information.
• @RG – Read group information.
• @PG – Program (software) information.
• @CO – Commentary line.

@HD VN:1.0 SO:coordinate
@SQ SN:chr1 LN:249250261 AS:NCBI37
@SQ SN:chr2 LN:243199373 AS:NCBI37
@RG ID:1 PL:ILLUMINA
@RG ID:2 PL:SOLID
@PG ID:1 PN:bwa VN:0.5.4
@CO My one line text comment.
@CO Just another one line text comment.

format version
sorting order reference name

reference length reference assembly

group ID
platform

program ID program name program version
41BI390: Bioinformatics Workshop

SAM File – Fields

• Example:

– https://samtools.github.io/hts-specs/SAMv1.pdf 42BI390: Bioinformatics Workshop

BAM File
• Compression – BGZF Block Compression*.
• Efficient random access – UCSC Bin/Chunk

Scheme*.
• BAI index files.
• Visualize BAM alignments in IGV software:

– http://software.broadinstitute.org/software/igv/

* Kent et al. (2010)
Bioinformatics. 26(17):2204.

43BI390: Bioinformatics Workshop

BED & BigBED Files

44

• Rarely used to store alignments: usually stores
other types of genomic intervals.

• Bed specifications:
– https://genome.ucsc.edu/FAQ/FAQformat#format1

• BigBed: Binary compressed & indexed BED file*.
• BigBed specifications:

– https://genome.ucsc.edu/goldenPath/help/bigBed.html

chr1 1000 1500 name1 300 +
chr1 1000 1500 name1 300 +
chr1 1000 1500 name1 300 +

reference name start end “name” score strand

* Kent et al. (2010)
Bioinformatics. 26(17):2204.

BI390: Bioinformatics Workshop

Summary
• Sequencing technologies: 1st, 2nd, 3rd generation.
• Illumina has taken most of the market.
• Sequences are stored in FASTQ files.
• After sequencing, perform quality assessment

(FASTQC).
• Sequenced “reads” need to be aligned back to

reference genome.
• Aligned reads are stored in SAM/BAM files.

45BI390: Bioinformatics Workshop

