
R Package Development

Maoying (CCB)

Maoying Wu

ricket.woo@gmail.com

Outline

1 R package basics

2 Package commands and structure

3 Writing R documentation
Rd format
Vignettes

4 Package unit testing

5 Distributing packages

Maoying (CCB)

Next...

1 R package basics

2 Package commands and structure

3 Writing R documentation
Rd format
Vignettes

4 Package unit testing

5 Distributing packages

Maoying (CCB)

References

R Installation and Administration [R-admin], R Core team

Writing R Extensions [R-ext], R Core team

Use help.start() to access them from your local installation, or
http://cran.r-project.org/manuals.html from the web.

Terminology

A package is loaded from a library by the function library(). Thus a
library is a directory containing installed packages.

Calling library("foo", lib.loc = "/path/to/bar") loads the
package (book) foo from the library bar located at /path/to/bar.

Maoying (CCB)

http://cran.r-project.org/manuals.html

Packages

One of the aspects that make
R appealing:

CRAN package repository features
7542 available packages.

R-forge 1965 hosted projects.

Bioconductor 2164 packages in latest
release (version 3.0).

Numbers checked in December 2015

Maoying (CCB)

Why packages

Packages provide a mechanism for loading optional code and attached
documentation when needed.
Also – packages are a means to

logically group your own functions

keep code and documentation together and consistent

keep code and data together

keep track of changes in code

summarise all packages used for analyses (see sessionInfo())

make a reproducible research compendium (container for code, text,
data as a means for distributing, managing and updating)

optionally test your code

. . . project managment

even if you do not plan to distribute them.

Maoying (CCB)

Package creation workflow

Workflow

1 Prepare your code as .R files

2 Run package.skeleton() to place them in a “package layout”

3 Create the .tar.gz file using R CMD build myRpackage

4 Check the .tar.gz for errors using
R CMD check myRpackage 1.0.tar.gz

5 Install the package using R CMD INSTALL
myRpackage 1.0.tar.gz or install.packages()

Notes

- Use steps 1-5 to create the initial version of the package, and steps 3-5
to update the package.
- Text in bold is executed outside R.

Maoying (CCB)

Creating a package - package.skeleton()

A minimal package

We prepared a file read.R that containt the function readFasta().
Function package.skeleton() automates some of the setup for a new
package:

> package.skeleton(name="myRpackage", code_files=c("read.R", "DataClasses.R"))

Creating directories ...

Error in package.skeleton(name = "myRpackage", code_files =

c("read.R", : directory ’./myRpackage’ already exists

Maoying (CCB)

> package.skeleton(name="myRpackage", code_files=c("read.R", "DataClasses.R"))

produces

myRpackage/

|-- DESCRIPTION

|-- NAMESPACE

|-- man

| -- myRpackage-package.Rd

| -- readFasta.Rd

|-- R

| -- read.R

-- Read-and-delete-me

2 directories, 6 files

Maoying (CCB)

Building the package

Note

To build the package we will first delete the documentation templates (we
will revisit this later).

delete documentation templates

$ rm -f myRpackage/man/*

$ R CMD build myRpackage

* checking for file myRpackage/DESCRIPTION ... OK

* preparing myRpackage:

* checking DESCRIPTION meta-information ... OK

* checking for LF line-endings in source and make files

* checking for empty or unneeded directories

* building myRpackage_1.0.tar.gz

Maoying (CCB)

Installing and using the package

$ R CMD INSTALL myRpackage_1.0.tar.gz

* installing to library /ext/home/R/x86_64-pc-linux-gnu-library/3.1

* installing *source* package myRpackage ...

** R

** preparing package for lazy loading

** help

No man pages found in package myRpackage

*** installing help indices

** building package indices

** testing if installed package can be loaded

* DONE (myRpackage)

Use package

We can verify the new package is now available (although still not fully functional!) from R:

> library("myRpackage")

>

> readFasta("aDnaSeq.fasta")

An object of class "GenericSeq"

Slot "id":

[1] "example dna sequence"

Slot "alphabet":

[1] "A" "G" "C" "T"

Slot "sequence":

[1] "AGCATACGACGACTACGACACTACGACATCAGACACTACAGACTACTACGACTACAGACATCAGACACTACATATTTACATCATCAGAGATTATATTAACATCAGACATCGACACATCATCATCAGCATCAT"

Maoying (CCB)

Exercise 1: Create a package

Follow the steps in the previous slides to create the example package
containing the readFasta() function.

Exercise 2: Complete the package functionality

Add the GenericSeq class to the package by adding a new file
DataClasses.R to your package. Copy this file to the package R/

directory and then rebuild the package following steps 3-5.

Maoying (CCB)

Some practical tips

Using devtools

Rebuilding and reloading packages can be a bit cumbersome. Package
devtools has many great tools for package development, such as
load_all() that mimics the rebuild/reload process.

> library(devtools)

> load_all("myRpackage/")

>

> readFasta("aDnaSeq.fasta")

... and many more!

Maoying (CCB)

Next...

1 R package basics

2 Package commands and structure

3 Writing R documentation
Rd format
Vignettes

4 Package unit testing

5 Distributing packages

Maoying (CCB)

Package commands

Building packages

R CMD build myRpackage – the R package builder builds R package
(and vignettes if available).

Checking packages

R CMD check myRpackage_1.0.tar.gz or R CMD check myRpackage –
the R package checker tests whether the package or source work correctly.

The package is installed (checks missing cross-references and duplicate aliases in help
files).

File names validity, permissions.

Package DESCRIPTION file is checked for completeness, and some of its entries for
correctness.

R and .Rd files are checked for syntax errors.

A check is made for missing documentation entries.

Codoc checking

Examples provided by the package’s documentation are run.

If available, package tests are run and vignettes are executed and compiled.

Maoying (CCB)

Package commands

Installing packages

R CMD INSTALL myRpackage_1.0.tar.gz or
install.packages("myRpackage_1.0.tar.gz") – installs the package
in the default library. Other libraries can be specified with the -l option or
lib argument.

Loading

Use library() or require().

On Windows

R is very much Unix centric. To build from source on Windows, you will
need Rtoolsa. See the The Windows toolset in R-Admin for more details.
It is also possible to build Windows binary packages from Linuxb.

ahttp://cran.r-project.org/bin/windows/Rtools/
bhttp://cran.r-project.org/doc/contrib/cross-build.pdf

Maoying (CCB)

http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/doc/contrib/cross-build.pdf

DESCRIPTION

Package: myRpackage ## mandatory (*)

Type: Package ## optional, Package is default type

Title: What the package does (short line) ## *

Version: 1.0 ## *

Date: 2013-05-10 ## release date of the current version

Author: Who wrote it ## *

Maintainer: Who to complain to <yourfault@somewhere.net> ## *

Description: More about what it does (maybe more than one line) ## *

License: What license is it under? ## *

Depends: methods, Biostrings ## for e.g.

Imports: evd ## for e.g.

Suggests: BSgenome.Hsapiens.UCSC.hg19 ## for e.g.

Collate: DataClasses.R read.R ## for e.g.

Maoying (CCB)

Lazy

Lazy loading

A mechanism used to defer initialization of an object until the point at
which it is needed. The individual objects in the package’s environment
are indirect references to the actual objects until, for example a function is
called or an object loaded.

The LazyLoad and LazyData fields control whether the R objects and the
datasets (respectively) use lazy-loading. LazyLoad must be set if the
methods package is used.

LazyLoad is now on by default.

Maoying (CCB)

Example

R uses Lazy evaluation, which delays the evaluation of an expression (here
the argument) until its value is actually required [a]:

aexample from Hadley Wickham’s devtools

> f <- function(x) { 10 }
> system.time(f(Sys.sleep(3)))

user system elapsed

0 0 0

> f <- function(x) { force(x); 10 }
> system.time(f(Sys.sleep(3)))

user system elapsed

0.000 0.000 3.004

Maoying (CCB)

DESCRIPTION

Other important fields

Depends A comma-separated list of package names (optionally with
versions) which this package depends on.

Suggests Packages that are not necessarily needed: used only in
examples, tests or vignettes, packages loaded in the body of
functions (see require()).

Imports Packages whose name spaces are imported from (as specified
in the NAMESPACE file) but which do not need to be attached
to the search path.

Collate Controls the collation order for the R code files in a package.
If filed is present, all source files must be listed.

URL A list of URLs separated by commas or whitespace.

. . .

Maoying (CCB)

NAMESPACE

The NAMESPACE file

Stored in the package directory. Restrict the symbols that are exported
and imports functionality from other packages. Only the exported symbols
will have to be documented.
Note: NAMESPACE is now required (since R 2.14).

export(f, g) ## exports f and g

exportPattern("^[^\\.]")

import(foo) ## imports all symbols from package foo

importFrom(foo, f, g) ## imports f and g from foo

It is possible to explicitely use symbol s from package foo with foo::s or
foo:::s if s is not exported.

Maoying (CCB)

Attach and load

Packages are attached to the search path with library or require.

Attach When a package is attached, then all of its dependencies
(see Depends field in its DESCRIPTION file) are also
attached. Such packages are part of the evaluation
environment and will be searched.

Load One can also use the Imports field in the NAMESPACE file.
Imported packages are loaded but are not attached: they do
not appear on the search path and are available only to the
package that imported them.

Maoying (CCB)

Package subdirectories

R

Contains source()able R source code to be installed. Files must start
with an ASCII (lower or upper case) letter or digit and have one of the
extensions .R (recommended), .S, .q, .r, or .s. File order is important if
code relies on earlier code – order use Collate filed in DESCRIPTION file.

Example

works fine without Collate field

AllGenerics.R DataClasses.R

methods-ClassA.R methods-ClassB.R

functions-ClassA.R ...

zzz.R is generally used to define special functions used to initialize (called
after a package is loaded and attached) and clean up (just before the
package is detached). See help(".onLoad")), ?.First.Lib and
?.Last.Lib for more details.

Maoying (CCB)

Package subdirectories

man

Manuals for the objects (package, functions, generics, methods, classes
and data sets) in the package in R documentation (Rd) format. The
filenames must start with an ASCII (lower or upper case) letter or digit
and have the extension .Rd or .rd and should be URL compatible. If you
use a NAMESPACE, only exported symbols need to be documented.
Without NAMESPACE, internal use only objects should be documented in
pkg-internal.Rd.

Maoying (CCB)

Package subdirectories

data

Contains data files, made available via lazy-loading or for loading using
data(). Data types that are allowed are

R code self-sufficient plain R code (.R or .r),

Tables possibly compressed tables (.tab, .txt, or .csv, see ?data

for the file formats)

Objects created using save() (.RData or .rda).

Example

There is a DnaSeq object in sequences/data.

Maoying (CCB)

Package subdirectories

inst

Content is copied recursively to the installation directory, for example

CITATION file (see citation() function),

doc directory for additional documents (see vignettesa, later).

extdata directory for other data files, not belonging in data.

tests code for unit tests (see later).

aIt is now also possible to use the ./vignettes directory for these.

Example

In our sequences package, there is a fasta sequence in
sequences/inst/extdata used to illustrate the readFasta function.

Maoying (CCB)

Package subdirectories

tests

Contains additional package-specific test code. We will talk about unit
tests later.

demo

R scripts runned via demo() that demonstrate some of the functionality of
the package. Execution of these scripts is not checked.

src

Contains sources and headers for the compiled code, plus optionally a file
Makevars or Makefile.

Maoying (CCB)

Adding C/C++ code

Using package Rcpp:

Package Rcpp makes it easy to call C/C++ code from R. It also has a
function:

> Rcpp.package.skeleton("myRpackage")

that will create a fully functioning R package with C/C++ integration.

Or manually:

1 Add your C/C++ files to directory src/

2 Create R wrapper functions for your C/C++ code

3 (Optionally) provide Makefile and Makevars files in src/

4 Add useDynLib(myRpackage) to NAMESPACE file

5 (For Rcpp) also add LinkingTo: Rcpp to DESCRIPTION

Maoying (CCB)

Next...

1 R package basics

2 Package commands and structure

3 Writing R documentation
Rd format
Vignettes

4 Package unit testing

5 Distributing packages

Maoying (CCB)

Rd format

R documentation format

R objects are documented in files written in R documentation (Rd) format,
a simple markup language much of which closely resembles LATEX, which
can be processed into a variety of formats, including LATEX, HTML, pdf
and plain text.

man/ directory

The documentation files are in the separate man/ package directory.

Using roxygen2

Package roxyxgen2 makes it easier to write documentation using special
in-source markup (similarly to Doxygen).

Maoying (CCB)

Roxygen2

Example
Reads sequences data in fasta and create \code{DnaSeq}

and \code{RnaSeq} instances.

#

This funtion reads DNA and RNA fasta files and generates

valid \code{"DnaSeq"} and \code{"RnaSeq"} instances.

#

@title Read fasta files.

@param infile the name of the fasta file which the data are to be read from.

@return an instance of \code{DnaSeq} or \code{RnaSeq}.

@seealso \code{\linkS4class{GenericSeq}}, \code{\linkS4class{DnaSeq}} and \code{\linkS4class{RnaSeq}}.

@examples

f <- dir(system.file("extdata",package="sequences"),pattern="fasta",full.names=TRUE)

f

aa <- readFasta(f)

aa

@author Laurent Gatto \email{lg390@@cam.ac.uk}

@export

readFasta <- function(infile){

lines <- readLines(infile)

header <- grep("^>", lines)

if (length(header)>1) {

warning("Reading first sequence only.")

lines <- lines[header[1]:(header[2]-1)]

header <- header[1]

}

(code cut for space reasons)

if (validObject(newseq))

return(newseq)

}

Maoying (CCB)

Using roxygen2 to write documentation

Exercise 3: Document readFasta

Use the code from the previous slide to document your own readFasta()
function inside your package. When you are finished do the following:

1 To generate the .Rd file for your package run:

library(roxygen2)

roxygenise("myRpackage/")

2 Rebuild/reload your package

3 Verify that ?readFasta gives the expected help page.

4 Look at man/readFasta.Rd and try to understand the structure.

roxygen2 syntax

For more information on roxygen2: http://cran.r-project.org/web/

packages/roxygen2/vignettes/roxygen2.html.

Maoying (CCB)

http://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
http://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

Rd format

An Rd file constists of

Header provides basic information about the name of the file, the
topics documented, a title, a short textual description and R
usage information – mandatory.

Body gives further information defined within sections (for
example, on the function’s arguments and return value, as in
the example)

Footer with keyword information – optional.

Every (exported) object must be documented. Package documentation is
optional.

Maoying (CCB)

Example

% File src/library/base/man/load.Rd

\name{load}

\alias{load}

\title{Reload Saved Datasets}

\description{

Reload the datasets written to a file with the function

\code{save}.

}

\usage{

load(file, envir = parent.frame())

}

\arguments{

\item{file}{a connection or a character string giving the

name of the file to load.}

\item{envir}{the environment where the data should be

loaded.}

}

\seealso{

\code{\link{save}}.

}

\examples{

save all data

save(list = ls(), file= "all.RData")

restore the saved values to the current environment

load("all.RData")

restore the saved values to the workspace

load("all.RData", .GlobalEnv)

}

\keyword{file}

Maoying (CCB)

Documentation

General comments

Different objects are documented with different types of Rd files, as
defined by the \docType{} tag.

Different object documentation require or are advised to contain
different sections.

One .Rd file can document several objects by defining multiple
\alias{}’es.

Maoying (CCB)

Documentation

Guidelines for Rd files

These are suggested guidelines for the system help files (in .Rd format)
that are intended for core developers but may also be useful for package
writers. (see http://developer.r-project.org/Rds.html)

There are many different sections and marking text (for mathematical
notation, tables, cross-references, . . .), that will look very familiar to
LATEX users. All are described in Writing R documentation files (section 2)
of the R-ext manual.
Fortunately, the prompt(object) et. al. functions will inspect the
object to be documented and create a specific documentation skeleton
for us to be completed.

Maoying (CCB)

http://developer.r-project.org/Rds.html

Package documentation

Provides an short and optional overview of a package.

Example

promptPackage("sequences")

Demonstration

Let’s look at the sequences-package.Rd that documents our package.

Maoying (CCB)

Data sets documentation

Example
\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{

This data set gives the lengths (in miles) of 141 \dQuote{major}

rivers in North America, as compiled by the US Geological

Survey.

}

\usage{rivers}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.}

\references{

McNeil, D. R. (1977) \emph{Interactive Data Analysis}.

New York: Wiley.

}

\keyword{datasets}

Example

prompt(myDataFrame) or promptData(myDataObject)

Demonstration

Let’s look at the document of the dnaseq object.

Maoying (CCB)

Function documentation

Many markup command, including \usage{fun(arg1, arg2, ...)},
\arguments{...}, \section{Warning}{...} and \examples{...},
which are executed!

Example

prompt(object=myFunction) or prompt(name="myFunction")

Demonstration

We have written one functions for our package so far, readFasta. It’s
documentation is available in man/readFasta.Rd.

Maoying (CCB)

Documenting S4 classes and methods

Documentation is ’similar’ than for functions. Note that aliases are of
the form MyClass-class or MyGeneric,signature_list-method.
Additionnal aliases should be added to refer to MyGeneric,
MyGeneric-method, . . . and the manuals are accessed with class?topic

and method?topic. Overall documentation for methods should be aliased
with MyGeneric-methods

See help("Documentation", package = "methods") for more details.

Example

promptClass("MyClass") and promptMethods("myMethod")

Maoying (CCB)

Document GenericSeq

Exercise 4: Document GenericSeq using promptClass()

Load GenericSeq and all of its methods into your R session and then run
promptClass("GenericSeq"). Edit the resulting .Rd file and place it
into man/.

Compare: promptClass() vs roxygen2

Roxygen makes it easy to document individual methods, promptClass()
makes it easy to document the whole class with all the methods in a single
file.

Maoying (CCB)

Vignettes

Package vignette

These executable documents are in Sweave format (.Rnw extension),
which is an extended LATEX document that includes code chunks. These
are executed and the output (variable, but also tables and graphs) are
displayed in the document. These dynamic reports, are updated
automatically if data or analysis change.

The package vignettes are compiled at build time and are the prefered
place for more extensive package documentation and use-cases.

Reference: http://www.stat.uni-muenchen.de/~leisch/Sweave/

The knitra package is an alternative to the Sweave package that provides
syntax highlighting, caching, ... and markdown out of the box.

ahttp://yihui.name/knitr/

Maoying (CCB)

http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://yihui.name/knitr/

Vignettes

Demonstration

Let’s have a look at the sequences package vignette in
sequences/vignettes.

Maoying (CCB)

sessionInfo()

Prints version information about R and attached or loaded packages.

sessionInfo()

R version 3.2.2 (2015-08-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04.3 LTS

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=zh_CN.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=zh_CN.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=zh_CN.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=zh_CN.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] knitr_1.11

##

loaded via a namespace (and not attached):

[1] magrittr_1.5 formatR_1.2.1 tools_3.2.2 stringi_1.0-1 highr_0.5.1

[6] stringr_1.0.0 evaluate_0.8

Maoying (CCB)

sessionInfo() in vignettes

toLatex(sessionInfo())

R version 3.2.2 (2015-08-14), x86_64-pc-linux-gnu

Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=zh_CN.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=zh_CN.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=zh_CN.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=zh_CN.UTF-8,
LC_IDENTIFICATION=C

Base packages: base, datasets, graphics, grDevices, methods, stats, utils

Other packages: knitr 1.11

Loaded via a namespace (and not attached): evaluate 0.8, formatR 1.2.1,
highr 0.5.1, magrittr 1.5, stringi 1.0-1, stringr 1.0.0, tools 3.2.2

Maoying (CCB)

Next...

1 R package basics

2 Package commands and structure

3 Writing R documentation
Rd format
Vignettes

4 Package unit testing

5 Distributing packages

Maoying (CCB)

How to test the code in your package?

Or how to make sure that changes in your code do not break existing
functionality?

Implicitely, documentation examples and a vignette do some tests.

Using R ’s built-in testing, that runs some code and compares the
output to a saved template.

Specific packages for unit testing: RUnita or testthatb.

ahttp://cran.r-project.org/web/packages/RUnit/index.html
bhttp://cran.r-project.org/web/packages/testthat/index.html

Maoying (CCB)

http://cran.r-project.org/web/packages/RUnit/index.html
http://cran.r-project.org/web/packages/testthat/index.html

Using an .Rout.save file

In package/tests/

Create

mytest.R with code to be tested

mytest.Rout.save with the reference output

When checking your package R will

1 execute the code in mytest.R

2 save the output to mytest.Rout

3 compare mytest.Rout to mytest.Rout.save

4 report any differences

Maoying (CCB)

Using testthat

Test individual expression

expect_that(object_or_expression, condition) with conditions

equals expect_that(1+2,equals(3)) or expect_equal(1+2,3)

gives warning expect_that(warning("a"), gives_warning())

is a expect_that(1, is_a("numeric")) or
expect_is(1,"numeric")

is true expect_that(2 == 2, is_true()) or
expect_true(2==2)

matches expect_that("Testing is fun", matches("fun")) or
expect_match("Testing is fun", "f.n")

takes less than expect_that(Sys.sleep(1),takes_less_than(3))

...

Maoying (CCB)

Using testthat

Example

library(sequences)

Error in library(sequences): there is no package called

’sequences’

library(testthat)

a <- new("DnaSeq",sequence="ACGTaa")

Error in getClass(Class, where =

topenv(parent.frame())): "DnaSeq" is not a defined class

test_that("ok test", {
expect_equal(length(a),6)

expect_true(seq(a)=="ACGTAA")

expect_is(a,"DnaSeq")

})

Error: Test failed: ’ok test’

Not expected: object ’a’ not found

1: withCallingHandlers(eval(code,

new_test_environment), error = capture_calls,

message = function(c)

invokeRestart("muffleMessage"))

2: eval(code, new_test_environment)

3: eval(expr, envir, enclos)

4: expect_equal(length(a), 6) at <text>:5

5: expect_that(object, equals(expected, label =

expected.label, ...), info = info,

label = label)

6: condition(object)

7: compare(actual, expected, ...).

expect_true(seq(a)=="ACGTaa")

Error in seq(a): object ’a’ not found

Maoying (CCB)

Next...

1 R package basics

2 Package commands and structure

3 Writing R documentation
Rd format
Vignettes

4 Package unit testing

5 Distributing packages

Maoying (CCB)

Submission

CRAN Read the CRAN Repository Policya. Upload your --as-cran
checked myPackage_x.y.z.tar.gz to
ftp://cran.R-project.org/incoming or using
http://CRAN.R-project.org/submit.html. Your
package will be installable with
install.packages("myRpackage").

R-forge Log in, register a project and wait for acceptance. Then
commit you code to the svn repository. Your package will be
installable with install.packages using
repos="http://R-Forge.R-project.org".

ahttp://cran.r-project.org/web/packages/policies.html

Maoying (CCB)

ftp://cran.R-project.org/incoming
http://CRAN.R-project.org/submit.html
http://cran.r-project.org/web/packages/policies.html

Submission

Bioconductor Make sure to satisfy submission criteria (pass check, have
a vignette, use S4 if OO, have a NAMESPACE, make use of
appropriate existing infrastructure, include a NEWS file,
must not already be on CRAN, . . .) and submit by email.
Your package will then be reviewed before acceptance. A svn
account will then be created. Package will be installable with
biocLite("myPackage").

Other popular un-official repositories are github, bitbucket, . . . and
packages can be installed with
devtools::install_github,
devtools::install_bitbucket.

Maoying (CCB)

References

Further reading

R Installation and Administration, R Core team.

Writing R Extensions, R Core team.

Robert Gentleman, R Programming for Bioinformatics, 2008.

Building packages for Bioconductor: http://www.bioconductor.

org/developers/how-to/buildingPackagesForBioc/

R package development, by Hadley Wickham:
http://r-pkgs.had.co.nz/

Maoying (CCB)

http://www.bioconductor.org/developers/how-to/buildingPackagesForBioc/
http://www.bioconductor.org/developers/how-to/buildingPackagesForBioc/
http://r-pkgs.had.co.nz/

	R package basics
	Package commands and structure
	Writing R documentation
	Rd format
	Vignettes

	Package unit testing

