The Joint i3+3 (Ji3+3) Design for Phase I Dose-finding Trials

Xiaolei Lin

¹School of Data Science Fudan University

SBF - 2020 Q3, Shanghai

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

Introduction - Phase I Dose-finding Trials & Statistical Design

Original i3+3 - Method & Motivation

Joint i3+3 - Motivation, Method, Operating Characteristics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Phase I Dose-Finding Trials

Phase I studies are often designed to find the "best" dose in human

How one defines "best" will be one of the primary factors in study design

- Typically, "best" is defined as the dose where the probability of toxic event (DLT), is less than some pre-determined threshold
- MTD (maximum tolerable dose)
- Assumption: monotonic dose-response curve ("tolerance distribution") in toxicity setting

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Statistical Methods for Phase I Trials

- ▶ 3+3
 - Model free, widely used
- Continual re-assessment method (CRM) based
 - Pr(DLT = 1 | dose = x) = Ψ(x, a), continuous, monotone function of dose 0 ≤ x ≤ ∞

- Bayesian Logistic Regression Modeling (BLRM)
 - $logit{\pi_{\theta}(d)} = log \alpha + \beta log(\frac{d}{d^{\star}}), \alpha, \beta > 0$
- Interval-based designs mTPI, mTPI-2, BOIN, Keyboard

$$\blacktriangleright \quad (0, p_T - \epsilon_1), [p_T - \epsilon_1, p_T + \epsilon_2], (p_T + \epsilon_2, 1)$$

The "Original" i3+3 Design

- d = 1, ..., D ascending doses to be tested
- ▶ target toxicity rate p_T and equivalence interval (EI) $[p_T \epsilon_1, p_T + \epsilon_2]$
- x_d: number of observed DLTs at dose d; n_d: number of patients treated at dose d

Dose escalation rule by "i3+3"

Condition	Next dose level
x/n below El	<i>d</i> + 1
x inside El	d
$\frac{x}{n}$ above EI and $\frac{x-1}{n}$ below EI	d
$\frac{x}{n}$ above EI and $\frac{x-1}{n}$ inside EI	<i>d</i> – 1
$\frac{x}{n}$ above EI and $\frac{x-1}{n}$ above EI	<i>d</i> – 1

An Intuitive Example for "i3+3"

Suppose $p_T = 0.3$ with EI = [0.25, 0.35]

- Suppose $x_d = 3$ and $n_d = 6$
- mTPI design assigns "S" (stay at dose d) for the next cohort of patients
- ▶ In practice, "D" is considered safer and more desirable
- This type of argument has been raised by IRB review committee and regulatory agencies
- Actually, no consensus on what decisions are acceptable in real world trials
- Depends on review committee's experiences, preference, and common sense

•
$$x_d = 3$$
 out of $n_d = 3$?

•
$$x_d = 1$$
 out of $n_d = 3$?

▶ $x_d = 3$ out of $n_d = 6?$

An Intuitive Example for "i3+3"

It is widely accepted that the optimal decision is "S" when x_d = 1 out of n_d = 3 for 3+3 design

▶ However, "S" when $x_d = 3$ out of $n_d = 6$ is deemed too risky

Sample size (or data variability) plays the role

- For x_d = 1, n_d = 3 in 3+3 design, although ¹/₃ is twice higher than the target rate ¹/₆, the sample size n_d = 3 is too small to distinguish between ¹/₃ and ¹/₆; with 1 fewer DLT, ⁰/₃ is below ¹/₆
- For $x_d = 3$, $n_d = 6$ in mTPI design, $\frac{3}{6}$ is higher than the target 0.3, and with 1 fewer DLT, $\frac{2}{6}$ is still higher than 0.3
- ln summary, $\frac{3}{6}$ is more informative than $\frac{1}{3}$

Motivation for Joint i3+3 Design

For cytotoxic agent or chemo-therapy, monotonic dose-response is assumed

- Toxicity increases with dose
- Efficacy increases with dose

For immunotherapy, Adoptive cell therapy or gene therapy

- Monotonic dose-response can be assumed for toxicity, but not efficacy
- Efficacy may increase to a plateau or decrease with dose
- ▶ Optimal dose ≠ MTD
 - balance immune system boosting = combat cancer cells + avoiding over-stimulation

Feasibility of Joint i3+3 Design

For hematologic trials

- relatively easy to assess both toxicity and efficacy endpoints within reasonable time limits
- Usually within 8 weeks

For solid tumor trials

- Can be difficult to assess efficacy outcomes quickly
- Time-to-event design is being developed for the jointly modeling of toxicity and efficacy within the i3+3 framework

Design Set-up

- d = 1, ..., D: ascending dose levels
- \triangleright p_d , q_d : true probabilities of toxicity and efficacy at dose d
 - $\blacktriangleright p_1 \leq \ldots \leq p_D$
 - no ordering assumed for q₁,..., q_D
- x_d, y_d, n_d: observed DLT, efficacy outcomes and patients treated at dose level d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ p_T , (ϵ_1, ϵ_2) : target toxicity rate, small proportions
 - Equivalence toxicity interval: $EI = [p_T \epsilon_1, p_T + \epsilon_2]$
 - Under dosing toxicity interval: $UI = (0, p_T \epsilon_1)$
 - Over dosing toxicity interval: $OI = (p_T + \epsilon_2, 1)$
- *p_E*: efficacy threshold
 - Insufficient efficacy: (0, p_E)
 - Sufficient efficacy: [p_E, 1)

Probability Region: Stox, eff

Dose-finding Algorithm

Current dose d; n_d patients, x_d Tox, y_d Eff				
Eff cond.	Tox cond. Next dose (Decision)			
$\frac{y_d}{n_d} \leq p_E$	$\frac{x_d}{n_d} < EI$	d + 1 (E)		
	$\frac{X_d}{n_d} \in EI$	$d + 1 \; (E)$		
	$\frac{x_d}{n_d} > EI \& \frac{x_d - 1}{n_d} < EI$	d (S)		
	$\frac{x_d}{n_d}$ > EI & $\frac{x_d-1}{n_d} \in EI$	d - 1 (D)		
	$\frac{x_d}{n_d}$ > EI & $\frac{x_d-1}{n_d}$ > EI	$d - 1 \; (D)$		
$\frac{y_d}{n_d} > p_E$	$\frac{X_d}{n_d} < El$	d (S)		
	$\frac{x_d}{n_d} \in EI$	d (S)		
	$\frac{x_d}{n_d}$ > EI & $\frac{x_d-1}{n_d}$ < EI	d (S)		
	$\frac{x_d}{n_d}$ > EI & $\frac{x_d-1}{n_d} \in EI$	d - 1 (D)		
	$\frac{x_d}{n_d}$ > EI & $\frac{x_d-1}{n_d}$ > EI	$d - 1 \; (D)$		

Terminal Rules

- If the current dose is the highest dose, decision escalate "E" should be replaced with decision stay "S", since there is no dose to escalate to.
- Similarly, if the current dose is the lowest dose, decision de-escalate "D" should be replaced with stay "S" since there is no dose to de-escalate to.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Safety & Futility Rules

- Safety rule: if Pr(p_d > p_T | x_d, n_d) > η for a η close to 1 (say, 0.95), exclude doses d, d + 1, ..., D, from future use in this trial and treat the next cohort of patients at dose (d − 1).
- Futility rule: if $Pr(q_d > q_E | y_d, n_d) < \epsilon$ for a small ϵ (say, 0.3), where q_E is the minimum acceptable probability of efficacy, then exclude dose d from future use in the trial. Note that usually $q_E < p_E$ which is considered as a lower bound efficacy rate to justify the test of the drug in a trial.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pre-calculated Decision Table

# of pate at current doco	Toxicity counts	Efficacy counts		
# of pars. at current dose		0-1	2-3	
3	0-1	E	S	
	2	D	D	
	3	DU_T	DU_T	
		0	1-2	3-6
6	0-2	EU	Е	S
	3	DU _E	D	D
	4-6	DUT	DU_T	DU_T
		0	1-3	4-9
9	0-3	EU	Е	S
	4	DU _E	D	D
	6-9	DU_T^-	DU_T	DU_T
		0-1	2-4	5-12
12	0-4	EU	Е	S
	5-6	DU _E	D	D
	7-12	DU_T^-	DU_T	DU_T
		0-1	2-6	7-15
15	0-5	EU	Е	S
	6-7	DU _E	D	D
	8-15	DU_T^-	DU_T	DUT

Final Dose Selection

At the end of the trial, BOD (Biological Optimal Dose) is selected among multiple candidate doses based on joint utility scores $U(p,q) = f_1(p)f_2(q)$

For toxicity,

$$f_1(
ho) = egin{cases} 1, &
ho \in (0,
ho_1^\star). \ 1 - rac{
ho -
ho_1^\star}{
ho_2^\star -
ho_1^\star} &
ho \in (
ho_1^\star,
ho_2^\star), \ 0, &
ho \in (
ho_2^\star, 1) \end{cases}$$

For efficacy,

$$f_2(q) = egin{cases} 0, & q \in (0, q_1^\star). \ rac{q-q_1^\star}{q_2^\star - q_1^\star} & q \in (q_1^\star, q_2^\star), \ 1, & q \in (q_2^\star, 1) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Utility Functions

Suppose $p_T = 0.3$, $(p_1^\star, p_2^\star) = (0.2, 0.4)$, $(q_1^\star, q_2^\star) = (0.2, 0.6)$

・ロト・日本・日本・日本・日本・日本

BOD Filtering

The joint utility score for the final selected BOD might be low and not statistically distinguishable from 0, therefore, we propose a probabilistic inference for BOD filtering

A(p,q) = {(p,q) | p ∈ (0, p_T], q ∈ [q_E + δ, 1)}: Admissible probability region (APR)

q_E: minimal accepted efficacy rate

 \triangleright δ : minimal accepted clinical difference from the standard of care

▶ $B = \{U(p,q), (p,q) \in A(p,q)\}$: admissible utility region

For the selected dose d, calculate $p_{in} = Pr(U(p_d, q_d) \in B \mid data)$

If p_{in} is below some threshold p_{graduate}, no BOD will be selected
 otherwise, d will be selected as the BOD

Trial Conduct

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣ん()~.

Operating Characteristics

Simulation set-up

- A total of 1000 trials simulated under 20 dosing scenarios
 - scenario 1- 10 : monotonic dose-toxicity and dose-efficacy
 - scenario 11-20: monotonic dose toxicity, no-monotonic dose-efficacy

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 4 dose levels (D = 4)
- Design methods: 3+3, i3+3, Ji3+3, TEPI
- Sample size are matched by 3+3

Average Sample Size

Dosing scenarios

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Average Sample Size

Dosing scenarios

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Safety

うせん 同一人用 人用 人用 人口 マ

Reliability

Desirability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ()~

Summary

Ji3+3

- "model free" and rule based
- takes into account of both toxicity and efficacy data
- recommended for trials with non-monotonic dose response relationship
- Novel BOD filtering mechanism with APR and AUR
- Improve TEPI by a simplified rule based dose escalation algorithm without decreasing the operating characteristics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Challenge

Assessment window for efficacy endpoints

- might be > 12 weeks for solid tumors
- Surrogate endpoint
- Time-to-event modeling for efficacy endpoints

Elicitation for design parameters

- ▶ p_T , (ϵ_1, ϵ_2) elicited by physicians
- *p_E* needs to be calibrated for each trials
- q_E and δ follows a phase II convention

References

- Xiaolei Lin, Yuan Ji. The Joint i3+3 (Ji3+3) Design for Phase I/II Adoptive Cell Therapy Clinical Trials. Journal of Biopharmaceutical Statistics.
- Meizi Liu, Sue-Jane Wang, Yuan Ji. The i3+3 design for phase I clinical trials. Journal of Biopharmaceuticl Statistics
- ▶ B.E. Storer. Design and analysis of phase I clinical trials. Biometrics.
- Y. Ji, P. Liu, Y. Li, and B.N. Bekele. A modified toxicity probability interval method for dose-finding trials. Clinical Trials.
- D.H. Li, J.B. Whitmore, W. Guo, and Y. Ji. Toxicity and efficacy probability interval design for phase I adoptive cell therapy dose-finding clinical trials. Clinical Cancer Research.
- P.F. Thall and J.D. Cook. Dose-finding based on efficacy-toxicity trade-offs. Biometrics.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □