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Introduction:

Futility Analysis in Clinical Trials 
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In the news!
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Futility

Our topic / concept / scope:

• Addressing the possibility of terminating trials prior to 

the planned maximum {duration / amount of 

information}, because results on the main endpoint are 

weak / disappointing

• {Terminology is not entirely consistent throughout the 

literature (e.g., “inefficacy”)}
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Excluded

Our setting does not include stopping a trial for 

operational reasons that make it infeasible to conduct the 

trial as planned, e.g.:

– difficulty to enroll

– new emerging external information that undermines the 

trial’s rationale, or makes it unethical or unnecessary 

– serious safety risks that make it inappropriate to continue
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More on our scope

• What’s the objective of a trial? What’s “success”?

• Most typically, we think in terms of statistical significance

• The reality might not be so clear-cut

– might we desire to obtain a certain magnitude of estimated effect?

– can a trial that doesn’t quite reach significance still provide 

meaningful information to help quantify a treatment’s effects, or 

contribute to the further development strategy?

 Even a trial that shows weak effects more conclusively can still 

contribute relevant knowledge to the clinical community!

– what about other important endpoints on which the trial might 

provide meaningful information? Subgroups? etc.

Futility Analysis in Confirmatory Trials | Shanghai Biostatistics Forum | April 22, 20196



Our scope

• In this course, we’ll mainly proceed as if statistical 

significance of a single main endpoint is the objective of 

the study

• Most concepts and results that we’ll discuss readily 

extend to broader settings
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Group Sequential Designs
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Background: Group Sequential 
methods

• Group sequential designs that allow stopping a trial with 

a claim of having achieved its objectives are quite 

common, and well-understood

– can save time / resources / patient exposure if interim results are 

convincing; can make effective treatments available sooner 

• Usually, criteria are set to control type I error level 

across interim and final analyses

– by taking into account the correlation between tests induced by 

the common data

• Most frequently, alpha spending functions (Lan-DeMets 

1983) are used; these allow flexibility in the number and 

timing of looks, reflecting realities of clinical trials
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“Classical” group sequential 
procedures

• Assume 4 equally-spaced analyses, 1-sided  = 0.025

– require increased sample size to achieve the same power
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O’Brien-Fleming Pocock

Analysis zi Nominal α zi Nominal α

1 4.049 <0.001 2.361 0.009

2 2.863 0.002 2.361 0.009

3 2.338 0.010 2.361 0.009

4 2.024 0.021 2.361 0.009



Spending function design scheme

• -spending function is a monotone function on [0, 1], 

going from 0 to 

• A trial is designed to have desired operating 

characteristics, under some general expectation of how 

many analyses will take place, and when (information)

• The spending function reflects the cumulative type I 

error rate up to the point of each analysis

• Commonly used alpha spending functions

– (t) = 2 – 2 Φ ( zα/2 / √ t ) : O’Brien-Fleming 

– (t) =  log { 1 + (e-1) t }  : Pocock 
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Spending function implementation

• Interim analyses add a type of inefficiency to the design

– e.g., for fixed , β the most efficient procedure would analyze the 

data a single time

– Allowing multiple points where success may be achieved 

decreases the power or requires more information

• A spending function induces a desired philosophy as to 

what types of outcomes could justify early stopping

– caution versus aggressiveness ?

– maximum SS versus expected SS ?

• Expected sample size

Exp(SS) = ∑i (SS at look i) x P(stop at look i) 

– depends on an assumed effect size
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Sample size implications

• The trade-off:

– Conservative boundaries (e.g. O’Brien-Fleming-type) tend to 

have smaller impact on maximum sample size, because most 

alpha is maintained to the final analysis, but there tends to be 

lesser chance of stopping early

– Boundaries that are easier to reach early yield a larger maximum 

SS, but are more likely to result in early stopping, and thus may 

have a smaller expected sample size under strong alternatives
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Implementation

• Information targets are rarely hit exactly

• The spending function is used to determine criteria 

based on when the analyses actually occur

• Level is protected by definition; power is usually 

minimally impacted by deviations from the planned 

analysis timing

• Criteria define a necessary condition to stop with a 

positive claim while protecting 

– but not necessarily sufficient, stopping rules can be over-ridden
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General Futility Considerations
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Shifting gears:
What about poor effect?

• Should a trial continue if we’re able to judge (don’t 

worry yet about how) that it won’t meet its objective?

• Various motivations, often quite obvious:

– Savings: cost, resources, patients (#’s and exposure)

 perhaps resources can be allocated to more promising endeavors

– re-evaluating or modifying a program based on what’s been 

learned

– Ethics: can we continue to commit patients to participation in a 

trial that will clearly not meet its objectives, or to investigational 

treatments that will not be viable?

 for experimental treatments, perhaps we’re exposing patients to as-

yet-unknown safety risks
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Counter-motivations

• Some situations have attributes that argue against

allowing stopping for futility:

– Particularly for trials involving available / marketed therapies: is 

the medical community owed a more definitive and precise 

answer, by continuing

 as opposed to an ambiguous “the trial will not show statistical 

significance” ?

– Short-term intervention period, most/all patients enrolled, longer-

term follow-up

 e.g., vaccine trials, surgical interventions

– Possible negative impact on conduct of ongoing related trials

 perhaps, same compound in more favorable settings, e.g., indication, 

population
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Not a good counter-motivation

“We don’t expect to see interim results that weak”

• Futility criteria usually DO correspond to outcomes we 

didn’t expect!

• And we can’t control the laws of probability

• Don’t underestimate the ability of interim data to show 

surprising signals
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Balancing errors

• Keep in mind as we proceed: in considering futility, we 

can’t guarantee avoiding incorrect decisions

• The general goal would be to control / minimize the 

chances that we’re on the diagonal

Trial outcome

Interim decision Success Failure

Stop for futility (Incorrect) (Correct)

Continue Correct Incorrect
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Trade-offs

• At any given analysis point, incorrect decision chances 

are always in conflict with each other:

– If we set criteria to make one of the error rates smaller, 

then we necessarily make the other one larger

– With interim data we can’t expect, to control errors, for 

example, nearly as well as , β in the full design

– This can require careful consideration as to how to make 

the trade-off, to best meet the needs of a situation
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Example: imprecision of interim 
results

• Conventional 2.5% level, 90% power design for Δ

– final significance reached if we observe ~ 0.6 Δ

– with 50% information, length of a 95% CI is ~ 1.7 Δ

 at 25% information, it would be 2.4 Δ

• Let’s say that with half information, we observe 0.35 Δ

– disappointing, right?

– but a 95% CI ≈ ( -0.5 Δ, 1.2 Δ )

– we haven’t come close to ruling out either H0 or HA

– plausible effect sizes include some for which success is quite 

possible, and some where the trial is highly futile

• So what’s a sensible decision?
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Standard 4-look O-F scheme

-5

-4

-3

-2

-1

0

1

2

3

4

5

1st 2nd 3rd Finalz
-s

c
o

re

`

Test drug beats control

Futility Analysis in Confirmatory Trials | Shanghai Biostatistics Forum | April 22, 201922



One possibility for “lack of effect”
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One possibility for “lack of effect”
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What do we hope to achieve?
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Does this make more sense?
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Adjusting success criteria?

• A futility scheme decreases both the level and power

that the design would have in its absence

• Can we modify the success criteria to regain the lost α?

– e.g., final critical z could be below 1.96?

• This would imply that to claim α control, reaching a 

futility criterion requires stopping

• But rigidly following an algorithm is not generally 

viewed as the nature of how futility should be 

addressed in practice
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Typical efficacy scheme
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Impose a futility boundary
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Level is decreased
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Can we fix this . . . 
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Other relevant considerations

• Futility stopping is often a complex judgment involving 

the totality of information available

– are there other outcomes / early markers that suggest that the 

results may eventually trend differently?

– are there pending or unadjudicated outcomes with potential to 

change the current interpretation? A long “pipeline” of data that 

will eventually be obtained even if the study stops?

– does the data suggest a time trend, e.g., increasing benefit with 

increased exposure, or investigator experience?

 non-proportional hazards! – a big challenge (more on this later)

– are there data ambiguities, e.g., suggestion of meaningful benefit 

in a subgroup, that justify getting more data to resolve? 
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Guidelines, not rigid rules

• In most cases, futility rules are viewed as defining 

outcomes where stopping may be seriously considered, 

and may be implemented, pending a thorough review of 

all information available

– success criteria should NOT be modified to “buy back” lost α

• Thus, futility boundaries will result in lost power

– we could, if desired, increase SS to recover power

– in this session, we will for the most part focus on power loss as a 

metric for comparing schemes, but we could if desired flip this 

around, i.e., fix power and vary SS
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Terminology

• Binding criteria: if futility thresholds are reached, the 

understanding is that the study will stop; success criteria 

may be loosened accordingly

• Non-binding criteria: success criteria are NOT modified 

by the presence of futility rules (implicitly suggesting and 

allowing that they can be over-ridden when justified)

• Non-binding criteria are mainly used in current practice

– we’ll assume this during this session 
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Statistical Methodology
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Methodological approaches

• Let’s start to put some structure around quantifying the 

concept: allowing stopping if interim results are poor so 

that the chance of success seems small

– but how do we determine the “chance of success”?

– and what’s “small”?

• What does this mean / how do we quantify this / what 

are the available tools?
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Our notation

• Interim analyses with statistical information, 

respectively, t1, t2, . . . , final analysis at tF = 1

• Asymptotically normal test statistics Z1, Z2, . . . , ZF

• Study designed to have level , power 1-β for an effect 

Δ (we’ll mainly use  = 0.025, β = 0.10)

– e.g., mean difference for continuous data; for time-to-event 

data, Δ = ln(hazard ratio)

• For simplicity, we’ll mostly assume there’s no group 

sequential efficacy scheme, i.e., trial success occurs 

only if ZF > zα
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Tools

• A number of methods / approaches are used in current 

practice to address futility

• We’re not yet addressing the setting of criteria; for the 

moment, only reviewing some available methodologic 

approaches
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Tools for addressing futility

• Methodologies commonly used in setting futility criteria 

include:

– β-spending functions

 similar in concept to alpha spending: describes cumulative Type II 

error across the interim and final looks

– Conditional power

 what effect size is assumed to govern the rest of the trial?

 often conditions on the original study alternative, or point estimate; 

other quantities may also be used

– Predictive probability

 Bayesian framework

Futility Analysis in Confirmatory Trials | Shanghai Biostatistics Forum | April 22, 201939



β-spending functions

• Analog of  spending

• β(t) is an increasing function of information with β(1) = β

• Criteria are set so that at information time t, the 

cumulative false negative rate (i.e., stop for futility given 

Δ) across all analyses so far is β(t)
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β-spending functions (continued)

• O’Brien-Fleming and Pocock-type spending functions 

have been defined

• Parametric families allow extension to schemes 

allowing different (intermediate) behavior, e.g.

• gamma family 

γ(t) = β {1 – exp(-γt)} / {1 – exp(-γ)}

• rho family

ρ(t) = βt
ρ

, ρ > 0

Futility Analysis in Confirmatory Trials | Shanghai Biostatistics Forum | April 22, 201941



Examples: β-spending

•  = 0.025, 90% power, single look at 50% information
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Boundary Z-score Power (%)

O’Brien-Fleming 0.287 89.4

Pocock 0.955 85.4

Gamma(-1) 0.589 88.3



Conditional Power (CP)

• At a single interim analysis, what’s the chance that the 

trial will be successful if it continues?

• Define an effect Δ* that will be assumed to govern the 

remainder of the data

CP(Δ*) = P( ZF > zα | Zi, Δ
*)

• Can be solved by de-composing ZF into its fixed and 

stochastic parts
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Conditional Power calculation

• 2-look scheme, interim done at information t

• Z1, ZF represent interim and final test statistics, zF is the 

critical value for final analysis

• Decomposition: ZF = √t Z1 + √(1-t) Z2* 

• where Z2* is the increment of data obtained between the 

interim and final analyses
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Conditional Power calculation

• Assume that ∆* is the effect size governing the 

remainder of the trial

• CP(∆*) = P( ZF > zF | Z1, ∆*)

= P( Z2 > (zF - √t Z1) /√(1-t) | ∆* )

• In multiple-look schemes, we can incorporate the 

chance of success at any later interim analysis

– but this often yields results very similar to a calculation such as 

shown above that focuses on success just at the final analysis
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Predictive Probability (PP)

• Bayesian framework

• Can be viewed as averaging CP across a distribution of 

effect sizes induced by a prior and the data so far

PP=׬𝐶𝑃 ∆∗ 𝑃 ∆∗ 𝑖𝑛𝑡𝑒𝑟𝑖𝑚 𝑑𝑎𝑡𝑎 𝑑∆∗

• A valid probability statement much more broadly (i.e., 

than CP) 

– though only one value within the predictive distribution is true

– sometimes referred to as probability of success

• Most commonly a non-informative prior is used, but 

certainly informative priors can be considered
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Analytical forms

• Non-informative prior

• For a trial designed with level α, power 1-β
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5

Practical Implementation

Considerations
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Which approach to use?

• Discussions of the relative merits of the different 

approaches often seem to focus on philosophical

grounds

– e.g. the assumptions seemingly being made

– the degree to which quantities might be interpreted as 

chances of success

 but are they really?

– Spiegelhalter et al (CCT 1986): conditional approaches 

“fall short of being a rational aid”

 i.e., compared to predictive approaches
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Examples

• Consider 3 different outcome scenarios where action in 

an ongoing trial is planned / taken, based on interim 

results:

1. stop for futility because the interim effect is weak, and CP 

conditioning on that value is low (< 20%)

2. positive signal but GS boundary not reached, CP based 

on design  is 74%, and more favorable effect sizes are 

very plausible based on the data, so no action taken

3. positive signal seen, noticeably less than hypothesized, 

but an SSR scheme (say, Cui-Hung-Wang) was pre-

specified and leads to a substantial SS increase
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You might have guessed . . . 

• The 3 scenarios and outcomes are identical

• Conventional study design, 2.5% level, 90% power for 

an effect 

• Interim analysis at information time t=0.4:

– point estimate: d = 0.4

– 95% CI for  = (-0.56 d, 1.36 d)

• So - how do we decide what’s a good action, and what 

role the interim results and calculated CPs should play?
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CP: condition on what?

• Most commonly:

• the originally hypothesized design effect Δ?

– in some sense, extends the study design

– but now we have data – shouldn’t we use it?

– but in a neighborhood where stopping could make sense, this is 

much more optimistic than the data is suggesting

– so we’re conditioning on an effect that’s somewhat contradicted

by the data?

• the point estimate (say, d)

– as a best guess?

– but certainly not a good guess, as we’ve seen
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Other choices

• An effect between the initial hypothesis and the 

estimate?

– perhaps determined based upon a pre-specified prior? other 

data?

• A pre-specified confidence limit on the point estimate?

– how optimistic or pessimistic am I willing to be regarding the 

effect that was observed?

• Certainly multiple versions / quantities can be 

presented to a Data Monitoring Committee (DMC)

– though usually one of these will have been pre-stated to be the 

quantity of main initial focus
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PP interpretation issues

• Averages CP over a distribution of effect sizes induced 

by the interim data

• Only one of these is true (we don’t know which one)

• Much more broadly a valid probability statement

• How wide is the predictive distribution?
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Setting criteria

• In a given situation, in addition to picking a method, we 

need to decide on the details of its implementation

– e.g., what specific CP or PP threshold, or what parameter 

value for a spending function family?

• It’s easy to find literature examples where CP() has 

been described as a basis for a futility plan

– 10%, 20%, 30% are thresholds specifically mentioned
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Are these concepts intuitive?

• Two actual proposals / consultations for futility 

criteria that I’ve experienced:

1. With 20% of data available, conditional power 

assuming the original Δ must be at least 5%

2. At ⅔ information, the conditional power computed 

assuming that the observed effect is the true effect 

is at least 70%

• More on these later . . . 
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Relationship between criteria

• At a given time point, a futility rule expressed on any 

particular scale can be transformed to any other

• For example, in a 2.5% level, 90% power trial, single 

look at t = 50%, say we set a criterion of PP = 20%

• The same rule can be expressed as:

– CP(Δ) = 62%

– CP(d) = 12%

– ‘Beta spent’ = 6.7%

• Question: is the scale on which we express a futility 

criterion really that important?
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Analytical forms (as before)

• Non-informative prior

• For a trial designed with level α, power 1-β
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Inter-relationships

• Note that there are structural similarities among the 

quantities we’ve described, leading to straightforward 

conversions, for example:

)}1{)(()( 1

ztPPtCP  

)/)(()( 1 tPPdCP 
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Logic?

• The literature contains suggestions that one should 

start by defining a “chance of success”-type threshold, 

and then decide which quantity should be evaluated 

relative to this threshold

– stop if the chance is <20%; but should I use CP(Δ), CP(d), 

PP, etc.?

• Proposition: this is inherently illogical and counter-

productive

– backwards?

• How can I set a sound threshold without adequately 

understanding the statistical behavior of the specific 

quantity that will be the basis for the decision?
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Example: 90% power, t = 0.50

Z-score d / Δ CP(Δ) CP(d) PP β spent
Power 

loss

Stop 

under H0

No 

stopping
- - - - - 0 0

0 0 32% <1% 3% 1.1% 0.2% 50%

0.25 0.11 41% 1% 5% 2.1% 0.6% 60%

0.50 0.22 51% 4% 11% 3.7% 1.3% 69%

0.75 0.33 61% 10% 18% 6.2% 2.7% 77%

1.00 0.44 70% 22% 29% 9.8% 5.1% 84%

scales for expressing futility rule behavior
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I willing to spend . . . 

. . . to get how 

much of this?



Choice of metric

• A futility threshold should be chosen as an integral part 

of the study design to induce desirable behavior and 

operating characteristics onto the design

• The particular scale or metric we use to express a 

sound rule certainly is not totally without interpretive 

value, but often it’s really more of a device or 

convenience, rather than the driver

– it may facilitate modification of criteria when interim 

information targets are not exactly achieved
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Aggressiveness / caution

• {We need not focus only on H0, HA; other measures of 

weak effect, likely success, etc. could be considered 

and evaluated}

• When setting criteria, how much 

risk of stopping when we shouldn’t

• are we willing to pay to buy a desired amount of

chance of stopping when we should ?

• A number of factors can be relevant to decide on the 

degree of caution / aggressiveness that might be 

appropriate in a particular situation
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Caution / aggressiveness factors

1. How much belief do we have in the investigational 

product?

• Is there strong scientific rationale or extensive empirical 

evidence (e.g., from phase II) leading us to believe that 

the drug should work?

– so if early results were weak, we might be more likely to suspect 

that this could, at least in part, be chance (i.e., bad luck!)

• Or is there less evidence / rationale for a favorable prior 

belief?

– in which case we might be more inclined to “let the data speak 

for itself”
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Caution / aggressiveness factors

2. Ethics

• Is the endpoint itself harmful (i.e., not just symptomatic), 

so that a signal of harm could be actionable? 

• Are there potential safety risks to which we might be 

subjecting patients by continuing exposure?
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Caution / aggressiveness factors

3. Costs

• Quantify savings in terms of whatever dimensions of 

savings ($, time, enrolled patients) we’re particularly 

interested in

4. “Upside” / potential net benefit

• Is the investigational treatment one that could have a 

major medical / societal / commercial impact?

– which might argue in the direction of more caution
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When to evaluate futility?

• Again, a conflict :

– early: allows potentially greater savings

– later: better statistical properties

 better ability to distinguish between scenarios which should / 

should not justify continuing

• Futility behavior improves with information in 2 ways:

– greater accuracy of inferences from increased data (of 

course)

– less data still to come that can overturn current trends
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Futility timing

• Fixed versus variable costs

– in some trials, and for some dimensions of cost, a large 

proportion of costs are incurred or committed early

– in others, costs are distributed more “proportionately” as 

the trial proceeds

• Previous example: consider the criteria: z = 0.5

– at t = ½, we saw that power loss was 1.3%

– at t = ¼, it’s 9.2%
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Error trade-offs for varying time 
choices
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Multiple futility looks

• Why not?

– particularly in long-term studies

– the motivations are not necessarily specific to a single point

• There are practical limitations (on both ends) to when 

looks should take place

– too early, too late: no point

• The presence of a later look might impact the choice of 

criteria at a prior look

– a decision to continue doesn’t commit to trial completion, but 

only to proceed until a later point where data is more mature
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Choosing the metric, threshold

• Ideally, we might describe a scheme simply

– i.e., constant value on a particular scale (e.g., CP(Δ))?

• Now the scale matters!

– equal criteria across looks on one scale could be very 

unequal on another scale

• Let’s say that at t = ½, we feel that CP(Δ) = 50% is 

a sensible criterion

– what if we also used the same criterion at t = ¼, ¾ ?

– PP across the 3 looks: 1.3%, 10.0%, 23.0%
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Constant thresholds?

• If CP(Δ) = 50% works well at t = ½, should it be the 

metric and threshold at all points of the trial?

– is there any reason to expect this same standard has 

comparably good behavior at t = 0.25 ? at t = 0.75 ?

 hint: it doesn’t . . .

• CP at time 25% vs 50% vs 75%

– far different degrees of precision in the estimates

– presumably different degrees of contradicting the original 

study hypothesis

– different amounts of data yet to come that can overturn 

current trends
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Multiple-look principle

• As we determine boundaries in a multi-look 

scheme, it’s important to address whether it 

behaves well at all timepoints at which it might be 

used

• This applies regardless of the approach, e.g., it’s 

relevant for β-spending functions as well

– the function “links” criteria at different looks, but does it do 

this in a desirable way?
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Quantifying the error trade-offs

• How to extend to multiple looks?

• The cost of incorrect stopping:

– how about “power loss across the whole scheme”?

– of course, there are multiple schemes that achieve the 

same degree of power loss overall

 perhaps, equal power loss at each analysis?

• The benefit of correct stopping:

– ASN: average sample proportion under H0

– i.e., Σ tk x P(study stops at tk | H0) 
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Optimality?

• Optimal boundaries: For a given schedule of analyses, 

and a specified amount of power loss, we can define 

boundaries that minimize ASN

• In what follows, we’ll compare various boundary 

approaches:

– equal CP(Δ)

– equal CP(d)

– equal PP

– equal power loss

– optimal (as above)

– gamma family

– rho family
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Comparative investigation

• 3 interim looks at t = ¼, ½, ¾

• For each method, fix degrees of power loss and 

determine the corresponding boundary values, e.g.:

– what common CP value at the 3 looks achieves that value of 

power loss?

– what gamma family parameter achieves that degree of power 

loss?

– etc.

• Determine ASN for the resulting boundaries

• Plot ASN versus power loss
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ASN versus power loss

• Equal PP at the 3 

looks is quite 

close to optimal

• Equal CP(Δ) 

fares particularly 

poorly

• Suggests that PP 

provides an 

efficient futility 

framework?
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1% power loss comparison
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1% power loss boundaries

Futility boundary on z-scale

Boundary type
Common 

value
ASN 1st look 2nd look 3rd look

Equal CP() 0.347 0.636 -1.622 0.087 1.101

Equal CP(d) 0.0004 0.637 -0.472 -0.291 0.245

Equal PP 0.033 0.590 -0.612 0.086 0.780

Equal power loss 0.0033 0.595 -0.819 0.138 0.972

Gamma ( = -3.362) 0.604 -0.941 0.101 1.037

Rho ( = 2.917) 0.623 -1.269 0.085 1.091

Optimal - 0.585 -0.660 0.160 0.860
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What do “good” boundaries look like?

• Optimal boundaries for varying amounts of power loss
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What do “good” boundaries look like?

• Interim results should not be expected to predict well 

the final study results !! 

• Personal viewpoints:

– in many situations: power loss 1 – 2% ?

– early in a study, boundaries correspond to negative 

outcomes

– they cross into positive territory somewhere towards the 

middle of the trial

– never correspond to highly favorable outcomes
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“Messaging”

• Might trial personnel be encouraged by seeing that a 

study proceeded beyond a futility analysis - “we’ve 

made it past a futility analysis, so there’s a good chance 

the trial will be successful” - and then disappointed?

• The proper interpretation of continuation beyond a 

futility evaluation is:

– not that the trial is likely to succeed

– but rather, that it has a chance to succeed

– or else we would stop too many trials that turn out to be 

successful
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Sports analogies!

• Thought exercise: what type of deficit in a sporting 

event might correspond to a level of futility that would 

justify stopping a clinical trial?

• Major league baseball

– 4th inning? 7th inning?

• World Cup soccer

• NFL football

– midway through 3rd quarter?

– What if the score was 28 - 3?

Futility Analysis in Confirmatory Trials | Shanghai Biostatistics Forum | April 22, 201983



Predictive probability?
Super Bowl 51
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Non-constant effect /
non-proportional hazards

• There’s a number of reasons constant effect might not hold

– early-enrolling patients at initially-opening sites might be 

systematically different from patients enrolled later

– or there might otherwise be some “drift” in the patient population 

over time

– for chronic treatment, benefit might emerge slowly based upon 

cumulative amount of therapy received

– investigators may gain experience in optimally administering a 

complex therapy

• A particularly important case: non-proportional hazards

– not at all uncommon

– later data will more strongly reflect longer follow-up
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Non-constant effect (contd.)

• Much of what we’ve discussed implicitly suggests that 

treatment effect remains constant within a trial

– though not necessarily – we could compute CP 

conditioning on any effect we might hypothesize to govern 

the remainder of the data

• but quantities like CP(d) or PP with a non-informative 

prior would be hard to rationalize if we weren’t 

assuming constant effect
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Non-constant effect (contd.)

• Acknowledging this possibility might lead us to set 

criteria even more cautiously than suggested elsewhere 

in this course

• A pre-specified rationale for a possible direction or 

specific nature of non-constancy can be very helpful

• For non-PH, we might consider hypothesizing a model 

describing a potentially changing effect, and applying it 

to account for the different mixture of follow-up times in 

different subsets of trial data
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Example: Delayed treatment effect
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Log-rank p-value= 0.0024

HR and 95% CI = 0.66 (0.51, 0.87)

• Treatment effect emerges later in the trial; example adopted from an Immuno-

oncology trial 



Example: Delayed treatment effect 
(continued)

Information 

Fraction

No. of 

Events

Time

(month)

HR 95% CI

22% 49 1.4 0.906 (0.52, 1.59)

49% 110 2.1 0.933 (0.64, 1.36)

52% 118 2.2 0.971 (0.68, 1.39)

62% 140 3.2 0.843 (0.60, 1.18)

81% 183 5.4 0.702 (0.52, 0.94)

96% 218 10.0 0.651 (0.50, 0.85)

100% 228 22.3 0.664 (0.51, 0.87)
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Overall follow-up 

is low even with 

80% events

Treatment effect 

emerges late in the trial



Futility with non-constant effect

• Conservative futility boundaries at higher information 

fraction seems sensible

– e.g. futility threshold with HR > 1 at 50% information 

• Model-based approaches  

– calculating PP considering “promising effect” in future

– requires assumption: needs justification and understanding of 

operating characteristics

• Different “non-constant” treatment effect scenarios exist

– one size does NOT fit all 
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Special topic: non-inferiority

• N-I trial: objective is to exclude a negative outcome for 

an investigational treatment relative to an active control, 

defined by a pre-specified non-inferiority margin (say, )

• Almost everything we’ve discussed translates directly to 

N-I trials, accounting for the shifted hypotheses:

H0: Δ < - vs   HA: Δ  0

• Thus, for example, statistical properties of a futility rule 

that corresponds to an estimate d in a superiority trial 

will be exactly the same as those of an estimate

θ –  in an identically-powered N-I trial
^
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Non-inferiority (contd.)

• However, the practical issues, in terms of the ethics –

strategic balance, may play out differently, resulting in 

different choices

• In superiority trials, sound futility rules usually 

correspond to outcomes where the efficacy signal is 

comparable between the treatments

• For N-I, the signal corresponding to a rule with the same 

properties can be quite negative, and allows the 

possibility that the investigational group is harmful

(relative to control)
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Non-inferiority (contd.)

• This might lead us, on an ethical basis, to set more 

aggressive rules?

– and accept larger power loss?

• Ultimately, the principle remains as before: case-by-

case quantification and balancing of the various trade-

offs should lead to decisions as to how aggressive or 

cautious we should be 
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Case 1

• “When 20% of the data is available, continue the trial as 

long as the conditional power (assuming the original Δ), 

is at least 5%”

• This would correspond to z = - 4.6

• Basically impossible to reach even under H0

• A substantial signal of harm
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Case 2

• “When the endpoint has been assessed on ⅔ of the 

patients, continue the study only if the conditional 

chance of success, computed assuming that the 

observed effect is the true effect, is at least 70%”

• This is quite late in the trial; enrollment may be 

complete, and it’s likely that a very high proportion of 

resources has been expended

• Yet the “failure” threshold clearly corresponds to an 

observed effect greater than the value that would be 

significant at the end of the trial!
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Conclusions

• A futility scheme should be implemented with careful 

consideration of its motivation and objectives, and 

quantification of relative costs and trade-offs

• Familiar expression scales can be a useful device for 

describing criteria, but are not a substitute for sound 

investigation of operating characteristics

• Sensible futility criteria often correspond to quite poor 

observed outcomes, and it is important that trial 

personnel understand this

• Effective implementation of a sound monitoring plan, 

including communication with DMC, plays an important 

role
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