Multistate models to improve decision-making and effect quantification in clinical trials

Kaspar Rufibach

Methods, Collaboration & Outreach Group, Department of Biostatistics, Roche Basel 27th June 2019, Shanghai Biostatistics Forum

Generated 2019-06-27 at 06:01:09

Survival prediction for early decision-making:

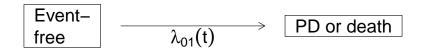
- Joint work with Ulrich Beyer, David Dejardin, Matthias Meller, Hans Ulrich Burger.
- Beyer et al. (2019), incl. R code and code documentation.

Agenda

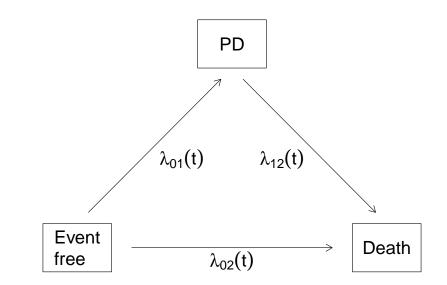
2 Survival prediction for early decision-making

Multistate models

Canonical extension of survival analysis



Canonical extension of survival analysis



Multistate models

Multistate model:

- 1-1 correspondence hazard probability breaks down.
- Transition probabilities: (Markov) process $X(t)_{t\geq 0}$ with state space $\{0, 1, 2\} = \{$ event-free, progression, death $\}$. Then,

$$P_{lj}(s,t) := P(X_t = j | X_s = l, \text{Past}).$$

- Estimate *P_{lj}*'s nonparametrically by Aalen-Johansen estimator.
- PFS: Kaplan-Meier of time-to-progression simply censoring death is biased!
- OS: Aalen-Johansen offers higher precision compared to simple Kaplan-Meier estimate, Andersen et al. (1993) (p. 315 and Fig. IV.4.16).
- Markov assumption stronger than what is needed for Kaplan-Meier though.

Prediction in multistate models

Rates (hazards, intensities):

- Modelling of effects of covariates on transition hazards.
- Hazard ratios (HR) from Cox regression.

Transition probabilities look at cumulative effects:

- Effects on transition probabilities may be different from what HRs suggest.
- Intermediate events in multistate model also contribute to cumulative effects.
- How to estimate such cumulative effects?

Prediction from multistate model!

Prediction in multistate models

General problem: estimate conditional probability of some future clinical event, given

- event history,
- set of values for prognostic factors of a patient.

Derive formulas for these conditional probabilities, or simulate.

Final result: survival function for OS, as function of

- covariates and
- relevant cumulative hazards.

Survival prediction for early decision-making

Decision-making in early oncology development

Contemporary decision-making in early oncology development:

- Single-arm Phase 1b trial for experimental drug with, e.g., 40 patients.
- Compute proportions of complete and overall response, duration of response.
- Compare proportions to "corresponding" quantities from literature for control treatment.

Meaningful PFS / OS typically not available!

Challenges and proposal

Endpoint in Phase 3 will be time-to-event, e.g. OS.

- Response-type endpoint meaningful for interpretation?
- **2** Surrogacy? Meta-analyses **IF** data available. **Surrogacy poor** in many indications.
- Immunotherapy (CIT): response proportions similar between experimental and control, but relevant OS effect.
- **In Non-randomized** comparison \Rightarrow selection bias.
- Proposal: Base decision-making on OS prediction from multistate model.
 - Predicted OS survival function for experimental arm, S_{exp}, is what we are interested in.
 - **2** Combine S_{exp} with S_{control} to get **predicted OS HR** based on multistate model.
 - Experimental drug might act on certain transitions only ⇒ not captured through simple modelling of OS. Potential efficiency gain!

Propensity scoring.

Goal of this talk

Feasibility and usefulness of multistate model:

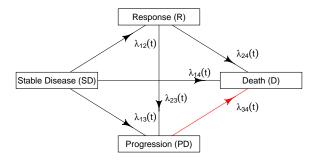
- Idealized scenario using retrospective data from Phase 3 RCTs.
- We have long-term follow up in both arms.
- Control arm mimics historical control.
- Randomization \Rightarrow no selection bias.

If multistate model approach should be useful \Rightarrow has to work in this idealized scenario.

Selection bias taken care of later.

Multistate model for early decision-making

- States: stable disease (SD), response (R), progression (PD), and death (D).
- States and transitions hazards λ_{ij} : imposed model for disease mechanism.



Early phase studies:

- Follow up of patient until PD or death without progression.
- Post-progression data very limited.
- Post-progression hazard λ_{34} : Assumption or borrowing from historical data.
- Transitions $1 \rightarrow 4, 2 \rightarrow 4$ rare, hazards \approx same in both arms.

Compute transition probabilities for each transition. Function of cumulative hazards.

 $S_{\text{exp}} = \text{sum of transition probabilities that end in death:}$

$$S_{\exp}(t) = 1 - \left(P_{SD \to D}(0, t) + P_{SD \to PD \to D}(0, t) + P_{SD \to R \to D}(0, t) + P_{SD \to R \to D}(0, t) + P_{SD \to R \to PD \to D}(0, t) \right)$$

 λ_{34} corresponding to PD \rightarrow D transition borrowed from historical data.

Historical borrowing for λ_{34}

Scenario 1: λ_{34} completely borrowed from historical control.

- Experimental treatment not expected to provide benefit beyond PD, e.g. antibody-dependent cellular cytotoxicity or chemotherapy.
- Plug-in hazard function estimate from historical control ⇒ no post-PD information required for experimental arm.

Scenario 2: λ_{34} proportional to post-PD hazard from historical control.

- Experimental treatment expected to provide benefit beyond PD, e.g. comparing CIT with chemo or ADCC.
- How much post-PD deaths needed in experimental arm to reliably estimate post-PD HR?

Example 1: Cleopatra

Cleopatra

Baselga and Cortes (2012), Swain and Baselga (2015).

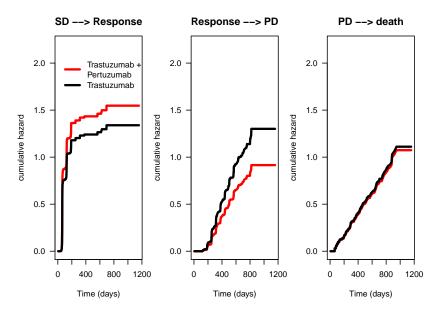
	Pertuzumab+Trastuzumab	Trastuzumab	HR (95% CI)
Survival	N=402	N=406	
Overall Survival			0.64
			(0.47,0.88)
Progression-free Survival			0.62 (0.51,0.75)
Response	N=343	N=336	
Objective Response	275 (80.2%)	233 (69.3%)	
Stable Disease	50 (14.6%)	70 (20.8%)	
Progressive Disease	13 (3.8%)	28 (8.3%)	
Duration of Response	N=275	N=233	
Median (months, 95% CI)	20.2 (16.0,24.0)	12.5 (10.0-15.0)	

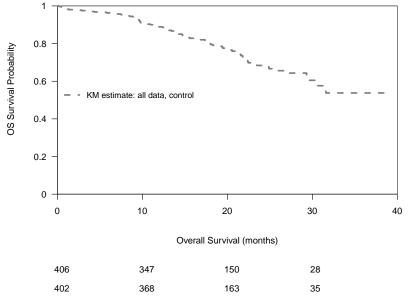
Previously untreated HER2-positive metastatic breast cancer patients.

- Moderate difference in response.
- Prolonged duration of response in experimental arm.
- Clear OS benefit.
- Experimental treatment induces antibody-dependent cellular cytotoxicity \Rightarrow no benefit beyond PD expected $\Rightarrow \lambda_{34}$ same in both arms.

Kaspar Rufibach

Cleopatra: cumulative hazards of interest

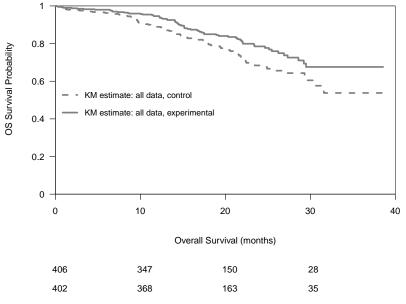




Kaspar Rufibach

Multistate models in clinical trials

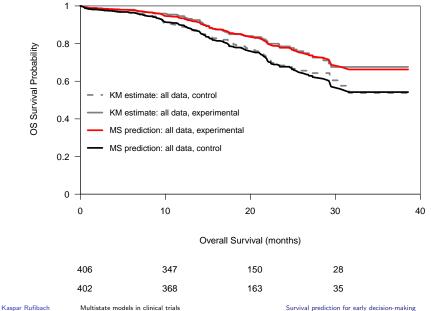
Survival prediction for early decision-making 18 / 57

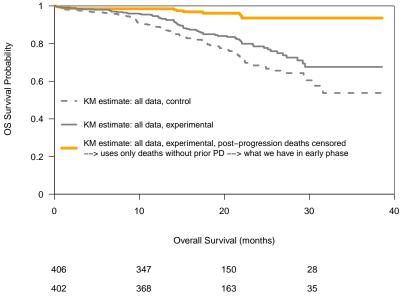


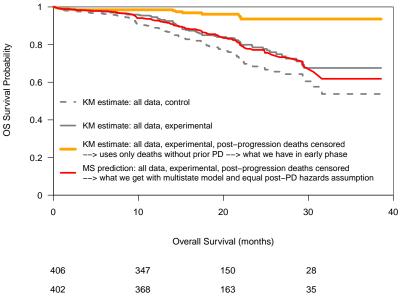
Kaspar Rufibach

Multistate models in clinical trials

Survival prediction for early decision-making 19 / 57







Kaspar Rufibach

Conclusions for Cleopatra

For estimated / predicted survival function in experimental arm, based on all data:

- Majority of patients dies after observed PD.
- KM estimate of simply censoring post-PD deaths does not work ⇒ very few deaths observed.
- Multistate model prediction assuming post-PD hazards as in control provides good prediction.

Operating characteristics of early phase decision based on multistate prediction?

OS prediction from mimicked early phase data

Sample early phase trial from Cleopatra experimental arm:

- 40 patients,
- 6 months uniform recruitment,
- analysis 15 months after first patient entered,
- censor post-PD follow up one day after PD,
- estimate $\lambda_{12}, \lambda_{13}, \lambda_{14}, \lambda_{23}, \lambda_{24}$ from this data,
- borrow $\widehat{\lambda}_{34}$ from historical data = Cleopatra control arm in idealized scenario,
- compute prediction of S_{exp} as described above.

Resampling of operating characteristics

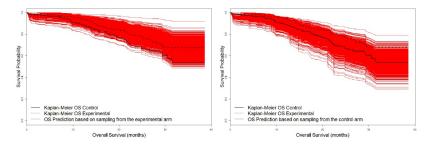
Setup:

- Use all data in control arm \Rightarrow corresponds to historical control.
- False-positive decision: Sample early phase trial from Cleopatra control arm.
- False-negative decision: Sample early phase trial from Cleopatra experimental arm.
- Approximate HR by fitting exponential distribution to both arms $\Rightarrow \widehat{HR}$.
- Decision to move to Phase 3: $\widehat{HR} \leq \text{boundary} \in \{0.80, 0.85, 0.90, 1.00\}.$
- Repeat 1000 times.

Resampling easily allows for quantification of uncertainty.

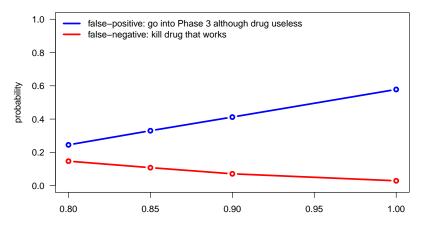
Cleopatra: operating characteristics

Sampled from experimental and control arm.



Cleopatra: operating characteristics

probability to go into Phase 3: P(approximated HR <= boundary)



hazard ratio decision boundary

Decision based on response: $\approx 10\%$ difference, some prolongation of DOR \Rightarrow moved to Phase 3.

Example 2: OAK

OAK

Rittmeyer et al. (2017).

Previously treated non-small-cell lung cancer.

	Atezolizumab	Chemotherapy	HR (95% CI)
Survival	N=425	N=425	
Overall Survival			0.73
			(0.62,0.87)
Progression-free Survival			0.95 (0.82,1.10)
Response	N=425	N=425	
Objective Response	58 (13.6%)	57 (13.4%)	
Stable Disease	150 (35%)	177 (42%)	
Progressive Disease	187 (44%)	117 (28%)	
Duration of Response	N=58	N=57	
Median (months, 95% CI)	26.3 (10,NE)	6.2 (4.9-7.6)	

- No observed difference in response.
- Prolonged duration of response in experimental arm.
- Control: no benefit post-PD expected.
- Experimental: CIT and post-PD treatment allowed ⇒ continued benefit expected after treatment/PD ⇒ post-PD hazards expected to be different.

OS prediction when post-PD hazards assumed proportional

Define random variable Z = 1 if patient is in experimental, Z = 0 if in control.

Assumption:

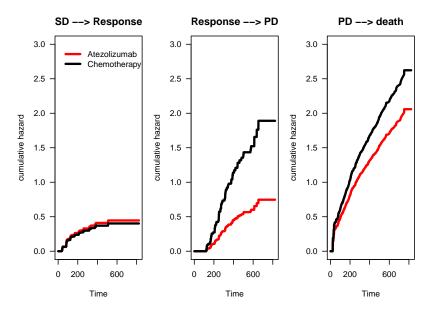
$$\lambda_{34}(t \mid Z) = \lambda_{34,0}(t) \exp(\beta_{34} Z).$$

Baseline hazard $\lambda_{34,0}$ estimated from both arms combined.

How much post-PD data needed in experimental arm to estimate β_{34} ?

Typical early phase follow up: Post-PD deaths censored 180 days after recruitment in experimental arm.

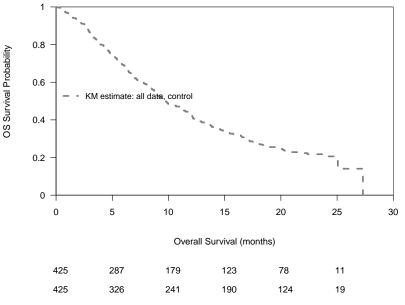
Oak: cumulative hazards of interest



Kaspar Rufibach

Multistate models in clinical trials

OAK: estimates / predictions of S_{exp}

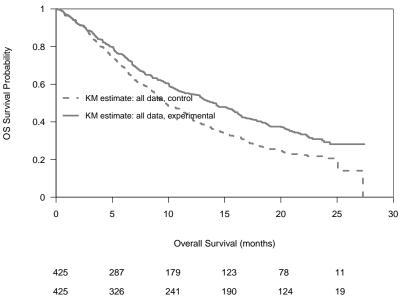


Kaspar Rufibach

Multistate models in clinical trials

Survival prediction for early decision-making 33 / 57

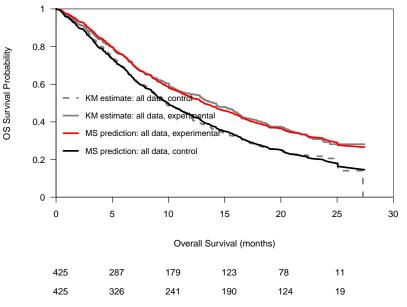
OAK: estimates / predictions of S_{exp}



Kaspar Rufibach

Multistate models in clinical trials

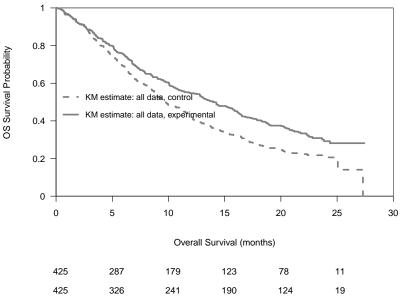
Survival prediction for early decision-making 34 / 57



Kaspar Rufibach

Multistate models in clinical trials

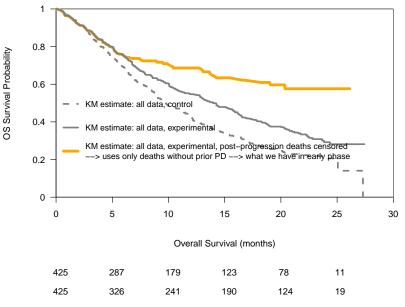
Survival prediction for early decision-making 35 / 57



Kaspar Rufibach

Multistate models in clinical trials

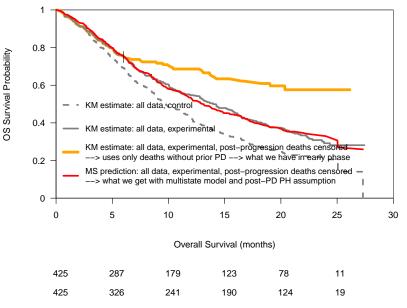
Survival prediction for early decision-making 36 / 57



Kaspar Rufibach

Multistate models in clinical trials

Survival prediction for early decision-making 37 / 57

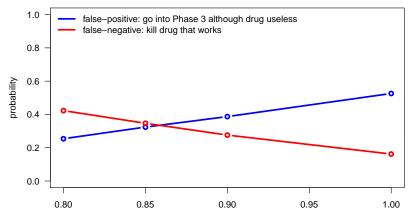


Kaspar Rufibach

Multistate models in clinical trials

Survival prediction for early decision-making 38 / 57

Oak: operating characteristics



hazard ratio decision boundary

Response: no difference, some prolongation of DOR. Likely would NOT have started Phase 3. Competitor info...

How many post-PD deaths needed to estimate HR of $3 \rightarrow 4$ transition?

Kaspar Rufibach Multistate models in clinical trials

How many post-PD deaths needed?

Assumption:

$$\lambda_{34}(t \mid \mathsf{Z}) = \lambda_{34,0}(t) \exp(\beta_{34} \mathsf{Z}).$$

How many post-PD deaths needed in **experimental** arm to reliably estimate λ_{34} ?

Planning stage: only data for control arm are available.

- Fit multistate model to control data.
- Simulate assuming potential differences in transition hazards for experimental arm.
- Considered hazard (ratios) should end up in a clinical meaningful OS effect.

Several scenarios for different post-PD follow up time can be simulated.

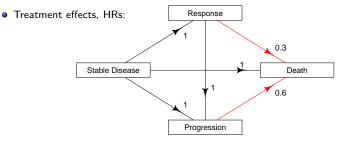
Purpose and simulation details

Goal: **NOT** power computation for hypothesis test – sample size too small anyway.

Rather: find cutoff timepoint from which on OS HR estimate remains stable.

Mimick Oak:

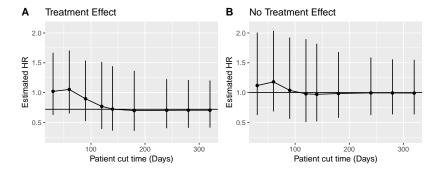
• Simulate 40 patient from experimental arm as before.



- Resulting OS HR = 0.73. Close to Oak OS HR.
- Follow up post-PD for experimental arm truncated at 30, 60, 90, 120, 150, 180 and 240 days after recruitment.
- Repeat 1000 times.

Kaspar Rufibach

Stability of hazard ratio estimate



180-240 days appear sufficient to obtain stable point estimate over time.

Conclusions for early-decision making proposal

Kaspar Rufibach Multistate models in clinical trials

Conclusions

Early phase decision-making based on multistate OS prediction:

- Beyer et al. (2019) has **3rd CIT** example with post-PD hazard different between arms.
- Assumption on $\lambda_{34} \Rightarrow$ need to understand disease and treatment.
- Avoids difficulty in interpretation of response-type endpoints, especially DOR.
- Feasibility assessed in idealized scenario where experimental arm OS is available.
- Recommendation how much post-PD follow-up needed to estimate λ_{34} .

Open points:

- Use of real-world data as historical control ⇒ selection bias. Combine proposal with propensity scoring.
- Needs long-term individual-patient data in control arm!
- Add covariates: baseline and pre-PD, or via joint models.
- Using states based on response ⇒ dichotomization. Alternatives?

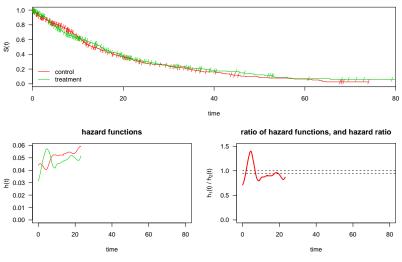
Effect quantification for non-proportional hazards

A fictional clinical trial

Simulated clinical trial:

- 1:1 randomized, 400 and 400 patients per arm.
- No administrative censoring, but drop-out.

PFS for simulated clinical trial

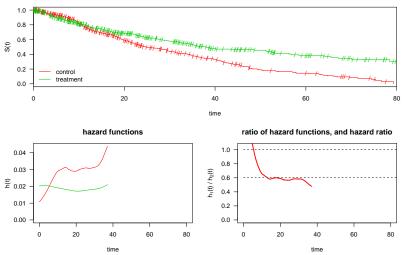


survival functions

• Estimated hazard ratio: 0.94, 95% confidence interval [0.80, 1.11].

Kaspar Rufibach

OS for simulated clinical trial



survival functions

• Estimated hazard ratio: 0.61, 95% confidence interval [0.50, 0.74].

• Test for PH: *p* < 0.0001.

Kaspar Rufibach

Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

	Transition	Control arm		Treatment arm		
	0 ightarrow 1	$\lambda_{01}^c = \log(2)/25$		$\lambda_{01}^t = \lambda_{01}^c \cdot 1$		
	0 ightarrow 2	$\lambda_{02}^c = \log(2)/30$		$\lambda_{02}^t = \lambda_{02}^c \cdot 0.8$		
	1 ightarrow 2	$\lambda_{12}^c = \log(2)/15$		$\lambda_{12}^t = \lambda_{12}^c \cdot 0.4$		
		coef	HR = exp	o(coef)	95% CI	<i>p</i> -value
transition event-free $->$ PD		-0.04		0.96	[0.77, 1.19]	0.72
transition event-free $->$ death		-0.09		0.91	[0.70, 1.18]	0.49
transition PD $->$ death		-1.09		0.34	[0.24, 0.46]	< 0.0001

Conclusions

Multistate models

Multistate models useful:

- Canonical extension of survival analysis.
- Get more **insight** in how disease and drug work.
- Competing risk simplest multistate model.
- Prediction in well-specified, as opposed to black-box, model.
- Jointly model three key oncology endpoints: response, PFS, OS. Applications by no means restricted to oncology though!

Many potential applications:

- Improved early stage decision-making \Rightarrow Beyer et al. (2019).
- Improved communication of effect and optimized sample size computation.
- Event-tracking with transition-specific covariates and taking into account every patient's history.
- Bivariate modelling of PFS and OS to help inform surrogacy questions \Rightarrow Meller et al. (2019).

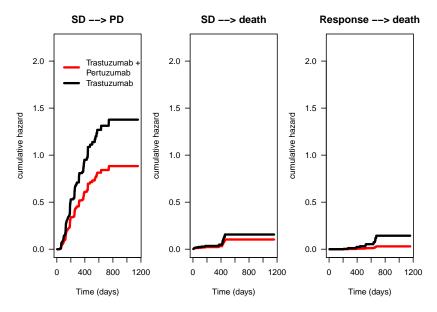
Thank you for your attention

References I

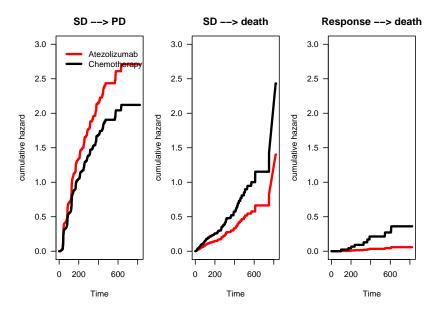
- Andersen, P. K., Borgan, r., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer.
- Baselga, J. and Cortes, J. e. a. (2012). Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366 109–119.
- Beyer, U., Dejardin, D., Meller, M., Rufibach, K. and Burger, H. U. (2019). A multistate model for early decision making in oncology. *Biom J, to appear*.
- Meller, M., Beyersmann, J. and Rufibach, K. (2019). Joint modelling of progression-free and overall survival and computation of correlation measures. *Stat. Med., accepted*.
- Rittmeyer, A., Barlesi, F., Waterkamp, D., Park, K., Ciardiello, F., Von Pawel, J., Gadgeel, S. M., Hida, T., Kowalski, D. M., Dols, M. C. et al. (2017). Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (oak): a phase 3, open-label, multicentre randomised controlled trial. *The Lancet* **389** 255–265.
- Swain, S. M. and Baselga, J. (2015). Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N. Engl. J. Med. 372 724–734.

Backup

Cleopatra: cumulative hazards of secondary interest

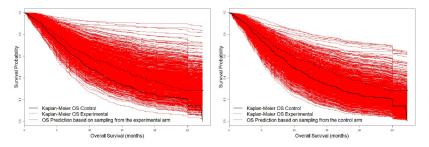


Oak: cumulative hazards of secondary interest



Oak: operating characteristics

Sampled from experimental and control arm.



Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 3.5.1 (2018-07-02)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / bindrcpp / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate / etm / dplyr / mvna / prodlim / biostatKR / survival

This document was generated on 2019-06-27 at 06:01:09.