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Multistate models
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Canonical extension of survival analysis

Event-
free Aoz (t)

| PD or death |
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Canonical extension of survival analysis
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Multistate models

Multistate model:
@ 1-1 correspondence hazard - probability breaks down.

@ Transition probabilities: (Markov) process X(t);>o with state space {0,1,2} =
{event-free, progression, death}. Then,

Pj(s,t) = P(Xt =j|Xs =1,Past).
@ Estimate Pj's nonparametrically by Aalen-Johansen estimator.
@ PFS: Kaplan-Meier of time-to-progression simply censoring death is biased!

@ OS: Aalen-Johansen offers higher precision compared to simple Kaplan-Meier
estimate, Andersen et al. (1993) (p. 315 and Fig. 1V.4.16).

@ Markov assumption stronger than what is needed for Kaplan-Meier though.
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Prediction in multistate models

Rates (hazards, intensities):
@ Modelling of effects of covariates on transition hazards.

@ Hazard ratios (HR) from Cox regression.

Transition probabilities look at cumulative effects:
@ Effects on transition probabilities may be different from what HRs suggest.
@ Intermediate events in multistate model also contribute to cumulative effects.

@ How to estimate such cumulative effects?

Prediction from multistate model!
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Prediction in multistate models

General problem: estimate conditional probability of some future clinical event, given
@ event history,

@ set of values for prognostic factors of a patient.

Derive formulas for these conditional probabilities, or simulate.

Final result: survival function for OS, as function of
@ covariates and

@ relevant cumulative hazards.
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Survival prediction for early decision-making
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Decision-making in early oncology development

Contemporary decision-making in early oncology development:
@ Single-arm Phase 1b trial for experimental drug with, e.g., 40 patients.
@ Compute proportions of complete and overall response, duration of response.

@ Compare proportions to “corresponding” quantities from literature for control
treatment.

Meaningful PFS / OS typically not available!
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Challenges and proposal

Endpoint in Phase 3 will be time-to-event, e.g. OS.
@ Response-type endpoint meaningful for interpretation?
@ Surrogacy? Meta-analyses IF data available. Surrogacy poor in many indications.

© Immunotherapy (CIT): response proportions similar between experimental and
control, but relevant OS effect.

© Non-randomized comparison = selection bias.

Proposal: Base decision-making on OS prediction from multistate model.

@ Predicted OS survival function for experimental arm, Sexp, is what we are
interested in.

@ Combine Sexp With Scontrol to get predicted OS HR based on multistate model.

© Experimental drug might act on certain transitions only = not captured through
simple modelling of OS. Potential efficiency gain!

© Propensity scoring.
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Goal of this talk

Feasibility and usefulness of multistate model:

Idealized scenario using retrospective data from Phase 3 RCTs.
@ We have long-term follow up in both arms.
@ Control arm mimics historical control.

@ Randomization = no selection bias.

If multistate model approach should be useful = has to work in this idealized scenario.

Selection bias taken care of later.
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Multistate model for early decision-making
@ States: stable disease (SD), response (R), progression (PD), and death (D).

@ States and transitions hazards )\;;: imposed model for disease mechanism.

Response (R)

Stable Disease (SD) (D)

Progression (PD)

Early phase studies:
@ Follow up of patient until PD or death without progression.
@ Post-progression data very limited.
@ Post-progression hazard A\34: Assumption or borrowing from historical data.

@ Transitions 1 — 4,2 — 4 rare, hazards &~ same in both arms.

Kaspar Rufibach Multistate models in clinical trials Survival prediction for early decision-making

12 /57



Computation of S,

Compute transition probabilities for each transition. Function of cumulative hazards.

Sexp = sum of transition probabilities that end in death:

Sep(t) = 1-— (PSD—>D(0» t) + Psp—pp—n(0,t) +

Psp—r—n(0,t) + Psp_sr—pp—D(0, f))-

A34 corresponding to PD — D transition borrowed from historical data.
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Historical borrowing for A3,

Scenario 1: A34 completely borrowed from historical control.

@ Experimental treatment not expected to provide benefit beyond PD, e.g.

antibody-dependent cellular cytotoxicity or chemotherapy.

@ Plug-in hazard function estimate from historical control = no post-PD

information required for experimental arm.

Scenario 2: \34 proportional to post-PD hazard from historical control.

@ Experimental treatment expected to provide benefit beyond PD, e.g. comparing
CIT with chemo or ADCC.

@ How much post-PD deaths needed in experimental arm to reliably estimate
post-PD HR?
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Example 1: Cleopatra
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Cleopatra

Baselga and Cortes (2012), Swain and Baselga (2015).

Previously untreated HER2-positive metastatic breast cancer patients.

Pertuzumab+-Trastuzumab  Trastuzumab

HR (95% Cl)

Survival N=402
Overall Survival

Progression-free Survival

Response N=343

275 (80.2%)

50 (14.6%)

13 (3.8%)
Duration of Response N=275

Median (months, 95% Cl) 20.2 (16.0,24.0)

Objective Response
Stable Disease

Progressive Disease

N=406
0.64
(0.47,0.88)
0.62 (0.51,0.75)
N=336

233 (69.3%)

70 (20.8%)

28 (8.3%)
N=233

12.5 (10.0-15.0)

Moderate difference in response.

@ Prolonged duration of response in experimental arm.

@ Clear OS benefit.

@ Experimental treatment induces antibody-dependent cellular cytotoxicity = no

benefit beyond PD expected = A34 same in both arms.
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Cleopatra: cumulative hazards of interest
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Cleopatra: estimates / predictions of S,
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Cleopatra: estimates / predictions of S,
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Cleopatra: estimates / predictions of S,

OS Survival Probability
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Cleopatra: estimates / predictions of S,
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Cleopatra: estimates / predictions of S,
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Conclusions for Cleopatra

For estimated / predicted survival function in experimental arm, based on all data:
@ Majority of patients dies after observed PD.

@ KM estimate of simply censoring post-PD deaths does not work = very few

deaths observed.

@ Multistate model prediction assuming post-PD hazards as in control provides

good prediction.
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Operating characteristics of
early phase decision based on
multistate prediction?
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OS prediction from mimicked early phase data

Sample early phase trial from Cleopatra experimental arm:
@ 40 patients,
@ 6 months uniform recruitment,
@ analysis 15 months after first patient entered,
@ censor post-PD follow up one day after PD,
@ estimate A12, A\13, A14, A23, A2a from this data,
@ borrow X34 from historical data = Cleopatra control arm in idealized scenario,

@ compute prediction of Sexp as described above.
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Resampling of operating characteristics

Setup:
@ Use all data in control arm = corresponds to historical control.
@ False-positive decision: Sample early phase trial from Cleopatra control arm.
@ False-negative decision: Sample early phase trial from Cleopatra experimental
arm.
@ Approximate HR by fitting exponential distribution to both arms = AR.
@ Decision to move to Phase 3: HR < boundary € {0.80,0.85,0.90,1.00}.
@ Repeat 1000 times.

Resampling easily allows for quantification of uncertainty.
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Cleopatra: operating characteristics

Sampled from experimental and control arm.
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Cleopatra: operating characteristics

probability to go into Phase 3: P(approximated HR <= boundary)

109 — false—positive: go into Phase 3 although drug useless
—— false—negative: kill drug that works
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Decision based on response: &~ 10% difference, some prolongation of DOR = moved

to Phase 3.
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Example 2: OAK
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OAK

Rittmeyer et al. (2017).

Previously treated non-small-cell lung cancer.

Atezolizumab Chemotherapy HR (95% ClI)
Survival N=425 N=425
Overall Survival 0.73

(0.62,0.87)

Progression-free Survival 0.95 (0.82,1.10)
Response N=425 N=425
Objective Response 58 (13.6%) 57 (13.4%)
Stable Disease 150 (35%) 177 (42%)
Progressive Disease 187 (44%) 117 (28%)
Duration of Response N=58 N=57
Median (months, 95% Cl) 26.3 (10,NE) 6.2 (4.9-7.6)

@ No observed difference in response.

@ Prolonged duration of response in experimental arm.

Control: no benefit post-PD expected.

@ Experimental: CIT and post-PD treatment allowed = continued benefit

expected after treatment/PD = post-PD hazards expected to be different.
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OS prediction when post-PD hazards assumed proportional

Define random variable Z = 1 if patient is in experimental, Z = 0 if in control.

Assumption:

Aa(t]Z) = Asao(t)exp(B3a2).

Baseline hazard A340 estimated from both arms combined.

How much post-PD data needed in experimental arm to estimate (3347

Typical early phase follow up: Post-PD deaths censored 180 days after recruitment in

experimental arm.
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Oak: cumulative hazards of interest
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OAK: estimates / predictions of S,

OS Survival Probability
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OAK: estimates / predictions of S,
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OAK: estimates / predictions of S,
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OAK: estimates / predictions of S,
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OAK: estimates / predictions of S,
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OAK: estimates / predictions of S,

OS Survival Probability
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Oak: operating characteristics

probability to go into Phase 3: P(approximated HR <= boundary)

1019 — false—positive: go into Phase 3 although drug useless
—— false—negative: kill drug that works
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hazard ratio decision boundary

Response: no difference, some prolongation of DOR. Likely would NOT have started
Phase 3. Competitor info...
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How many post-PD deaths needed to
estimate HR of 3 — 4 transition?

Kaspar Rufibach Multistate models in clinical trials Survival prediction for early decision-making 40 / 57



How many post-PD deaths needed?

Assumption:

Aa(t]Z) = Asao(t)exp(B3aZ).

How many post-PD deaths needed in experimental arm to reliably estimate A347?

Planning stage: only data for control arm are available.
@ Fit multistate model to control data.
@ Simulate assuming potential differences in transition hazards for experimental
arm.

@ Considered hazard (ratios) should end up in a clinical meaningful OS effect.

Several scenarios for different post-PD follow up time can be simulated.
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Purpose and simulation details

Goal: NOT power computation for hypothesis test — sample size too small anyway.
Rather: find cutoff timepoint from which on OS HR estimate remains stable.

Mimick Oak:

@ Simulate 40 patient from experimental arm as before.

@ Treatment effects, HRs: Response

0.3

Stable Disease

0.6

Progression

@ Resulting OS HR = 0.73. Close to Oak OS HR.
@ Follow up post-PD for experimental arm truncated at 30, 60, 90, 120, 150, 180

and 240 days after recruitment.

@ Repeat 1000 times.
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Stability of hazard ratio estimate
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180-240 days appear sufficient to obtain stable point estimate over time.
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Conclusions for early-decision making proposal
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Conclusions

Early phase decision-making based on multistate OS prediction:

@ Beyer et al. (2019) has 3rd CIT example with post-PD hazard different between

arms.
@ Assumption on A3s = need to understand disease and treatment.
@ Avoids difficulty in interpretation of response-type endpoints, especially DOR.
@ Feasibility assessed in idealized scenario where experimental arm OS is available.

@ Recommendation how much post-PD follow-up needed to estimate A3s.

Open points:
@ Use of real-world data as historical control = selection bias. Combine proposal

with propensity scoring.
@ Needs long-term individual-patient data in control arm!
@ Add covariates: baseline and pre-PD, or via joint models.

@ Using states based on response = dichotomization. Alternatives?
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Effect quantification for non-proportional
hazards
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A fictional clinical trial

Simulated clinical trial:
@ 1:1 randomized, 400 and 400 patients per arm.

@ No administrative censoring, but drop-out.
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PFS for
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simulated clinical trial

survival functions
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@ Estimated hazard ratio: 0.94, 95% confidence
@ Test for PH: p = 0.24.
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OS for simulated clinical trial

survival functions
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@ Estimated hazard ratio: 0.61, 95% confidence
@ Test for PH: p < 0.0001.

Kaspar Rufibach Multistate models in clinical trials

0 20 40 60 80

time

interval [0.50, 0.74].

Effect quantification for non-proportional hazards 49 / 57



Summarize treatment effect

Non-proportional hazards for OS. How to summarize effect of treatment?

Data was generated according to:

Transition Control arm Treatment arm
0—1 A5, = log(2)/25 Ay =25 -1
0—2 A5, =10g(2)/30 A, = A5, -0.8
1—2 A, =log(2)/15 A, =)A§,-0.4

coef  HR = exp(coef) 95% Cl p-value
transition event-free —> PD -0.04 0.96 [0.77, 1.19] 0.72
transition event-free —> death ~ -0.09 0.91  [0.70, 1.18] 0.49
transition PD —> death -1.09 0.34 [0.24,0.46] < 0.0001
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Conclusions
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Multistate models

Multistate models useful:
@ Canonical extension of survival analysis.
@ Get more insight in how disease and drug work.
@ Competing risk simplest multistate model.
@ Prediction in well-specified, as opposed to black-box, model.

@ Jointly model three key oncology endpoints: response, PFS, OS. Applications by
no means restricted to oncology though!

Many potential applications:
@ Improved early stage decision-making = Beyer et al. (2019).
@ Improved communication of effect and optimized sample size computation.

@ Event-tracking with transition-specific covariates and taking into account every
patient’s history.

@ Bivariate modelling of PFS and OS to help inform surrogacy questions =
Meller et al. (2019).
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Thank you for your attention
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Backup
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Cleopatra: cumulative hazards of secondary interest
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Oak: cumulative hazards of secondary interest

3.0

25

2.0

15

cumulative hazard

1.0

0.5

0.0

Kaspar Rufibach

SD ——>PD
3.0
= Atezolizumab
= Chemotl
25

20

15

cumulative hazard

1.0

05

0.0

T T T T T
0 200 600

Time

Multistate models in clinical trials

SD —-> death

0 200

Time

600

cumulative hazard

3.0

25

2.0

15

1.0

0.5

0.0

Response ——> death

0 200

600

Time

Conclusions

56 / 57



Oak: operating characteristics

Sampled from experimental and control arm.
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Doing now what patients need next

R version and packages used to generate these slides:

R version: R version 3.5.1 (2018-07-02)

Base packages: stats / graphics / grDevices / utils / datasets / methods / base

Other packages: nls2 / proto / bindrcpp / diagram / shape / ggplot2 / rocheBCE / muhaz / flexsurv / reporttools / xtable / mstate /
etm / dplyr / mvna / prodlim / biostatKR / survival

This document was generated on 2019-06-27 at 06:01:09.
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