Power assessment in group sequential design with multiple biomarker subgroups for multiplicity problem

Lei Yang, Ph.D. Statistical Scientist, Roche (China) Holding Ltd. Aug 30th 2018, Shanghai Jiao Tong University

GROUP SEQUENTIAL DESIGN & EFFICACY SUPERIORITY INTERIM ANALYSIS

Group sequential design

- Potentially stop trial after interim analysis for futility or efficacy
- Look into the data multiple times while maintaining integrity

Early stopping for efficacy superiority at interim analysis

- All patients should have timely access to new effective treatment
- · Launch new product early
- Early analysis may reveal problems (e.g. compliance, accrual rate)

HIERARCHICAL TESTING

Test primary population at full alpha

If significant, test next population with full alpha recycled and so forth

Fixed testing sequence ranking by clinical relevance or likelihood of success

Strong control of familywise error rate (FWER) due to (1) prospective specification of the testing sequence and (2) no further testing once the sequence breaks

Carefully selecting the ordering of the tests is essential

FDA Guidance for Industry (2017); Hung et al (2007); Glimm et al (2010); Tamhane et al (2010)

STRAIGHTFORWARD TESTING WITH ONE PRIMARY ANALYSIS ONLY

Primary Analysis

Roche

NESTED SUBGROUP ANALYSES WITHOUT IA

Possible scenarios with 2 BM subgroups: Panel I: non-nested subgroup analyses where subgroups can be disjoint (Panel Ia) or can intersect (Panel Ib); Panel II: nested subgroup analyses

INTERIM ANALYSIS INTRODUCES MORE COMPLEXITY

Page 6

Roche

NESTED AND INTERSECTANT SUBGROUP ANALYSES WITH IA

Possible scenarios with 2 BM subgroups: Panel I: non-nested subgroup analyses where subgroups can be disjoint (Panel Ia) or can intersect (Panel Ib); Panel II: nested subgroup analyses

SBF/SJTU

Roche

A MIXTURE OF INTERSECTANT AND NESTED SUBGROUPS

*O'Brien-Fleming boundary used at 60% information fraction FPE: First patient enrolled

Page 8

Roche

AN ARTIFICIAL PHASE III TIME-TO-EVENT CASE STUDY

- Drug A vs SOC by randomization ratio 1:1
- Population: All-comer & two subgroups defined by predefined cut-offs of CDx assays
 - All-comer (Group A) \supset BM high and medium (Group B) \supset BM high (Group C)
 - Can be extended to more biomarker subgroups
 - Prevalence rates are 75% for Group B and 50% for Group C
- Primary efficacy endpoint: OS
- HR assumptions (median OS of drug A vs SOC [months])
 - Biomarker high: 0.70 (14.3 vs 10)
 - Biomarker high and medium: 0.75 (13.3 vs 10)
 - All-comer: 0.80 (12.5 vs 10)
- Constant recruitment rate (40 pts/month for all-comer) and no drop-out assumed

SBF/SJTU

Page 9

One-sided test with alpha = 0.025

WHEN CORRELATIONS AMONG BIOMARKER SUBGROUPS NOT CONSIDERED

		HR (median OS [months])	Sample size	Marginal power (IA)	Events (IA)	Event patient ratio, EPR (IA)
	BM H (Group C)	0.70 (10 vs 14.3)	451	87.6%	305	68%
Withou t IA	BM H&M (Group B)	0.75 (10 vs 13.3)	676	87.3%	465	69%
	All-comer (Group A)	0.80 (10 vs 12.5)	902	80.0%	631	70%
	BM H (Group C)	0.70 (10 vs 14.3)	451	87.6% (40.8%)	307 (184)	68% (41%)
With IA	BM H&M (Group B)	0.75 (10 vs 13.3)	676	87.3% (40.4%)	469 (281)	69% (42%)
	All-comer (Group A)	0.80 (10 vs 12.5)	902	80.0% (31.8%)	<mark>636</mark> (382)	71% (42%)
 Key message Sample size determined to give 80% power for all-comer with EPR=70% without considering biomarker subgroups If so, both biomarker subgroups are over-powered when assessed respectively Target number of events slightly larger with IA 						
	Question 🧹 🕒	How about if correla	ations are o	considered to	0?	
					Page 10	(KOCHE) SBF/SJTU

Distribution of OS effect estimates

$$\hat{\theta}_{A} = \log(\widehat{HR}_{A}) \sim N(\theta_{A}, var(\widehat{\theta}_{A})), \mathcal{I}_{A} = (var(\widehat{\theta}_{A}))^{-1} = N_{A}/4$$
$$\hat{\theta}_{B} = \log(\widehat{HR}_{B}) \sim N(\theta_{B}, var(\widehat{\theta}_{B})), \mathcal{I}_{B} = (var(\widehat{\theta}_{B}))^{-1} = N_{B}/4$$
$$\hat{\theta}_{C} = \log(\widehat{HR}_{C}) \sim N(\theta_{C}, var(\widehat{\theta}_{C})), \mathcal{I}_{C} = (var(\widehat{\theta}_{C}))^{-1} = N_{C}/4$$

with \mathcal{I}_A , \mathcal{I}_B , \mathcal{I}_C are information levels in Group A, B and C and N_A , N_B , N_C are numbers of events respectively

Under null hypotheses $H_{0,C}$: $\theta_C = 0$; $H_{0,B}$: $\theta_B = 0$; $H_{0,A}$: $\theta_A = 0$, logrank test statistics $(Z_C = \hat{\theta}_C \sqrt{\mathcal{I}_C}, Z_B = \hat{\theta}_B \sqrt{\mathcal{I}_B}, Z_A = \hat{\theta}_A \sqrt{\mathcal{I}_A})$ has approximately canonical joint distribution

$$\begin{pmatrix} Z_C \\ Z_B \\ Z_A \end{pmatrix} \sim N \begin{pmatrix} \theta_C \sqrt{\mathcal{I}_C} \\ \theta_B \sqrt{\mathcal{I}_B} \\ \theta_A \sqrt{\mathcal{I}_A} \end{pmatrix}, \begin{pmatrix} 1 & \sqrt{\tau_{CB}} & \sqrt{\tau_{CA}} \\ \sqrt{\tau_{CA}} & 1 & \sqrt{\tau_{BA}} \\ \sqrt{\tau_{CA}} & \sqrt{\tau_{BA}} & 1 \end{pmatrix}$$

where $\tau_{CB} = \mathcal{I}_C / \mathcal{I}_B$, $\tau_{CA} = \mathcal{I}_C / \mathcal{I}_A$, $\tau_{BA} = \mathcal{I}_B / \mathcal{I}_A$ are information fractions

- Define score statistics $(S_C, S_B, S_A) = (Z_C \sqrt{\mathcal{I}_{1C}}, Z_B \sqrt{\mathcal{I}_{1B}}, Z_A \sqrt{\mathcal{I}_{1A}})$, then $(S_C, S_B S_C, S_A S_B)$ are independent
- For the case study without IA, $\tau_{CB} = 0.64$, $\tau_{CA} = 0.46$, $\tau_{BA} = 0.72$

Spiessens and Debois (2010); Jennison and Turnbull (1997, 2000)

OUTCOMES WHEN WITHOUT IA

	PA		PA		Probability of outcome	Accumulated probability	Hypothesis testing
	BM H	BM H & M	All- comer				
1	+	+	+	All-comer at PA	74.46%	74.5% (Marginal power for All-comer: 80.0%)	Reject $H_{0,C}$, $H_{0,B}$, $H_{0,A}$ under alternative hypotheses at PA
2	+	+	-	BM H&M at PA	7.95%	82.4% (Marginal power for BM H&M: 87.3%)	Reject $H_{0,C}$, $H_{0,B}$ under alternative hypotheses at PA
3	+	-		BM H at PA	5.18%	87.6% (Marginal power for BM H: 87.6%)	Reject <i>H</i> _{0,C} under alternative hypotheses at PA
4	-			No	12.41%	100.0%	-

Key message Powers are lower when taking correlations into consideration (-5.5% for all-comer and -4.9% for BM H&M), when there is no IA
Difference might be larger if assumptions changed (HR, prevalence rates, etc)

Roche

Distribution of OS effect estimates

$$\hat{\theta}_{kA} = \log(\widehat{HR}_{kA}) \sim N(\theta_A, var(\hat{\theta}_{kA})), \mathcal{I}_{kA} = (var(\hat{\theta}_{kA}))^{-1} = N_{kA}/4$$
$$\hat{\theta}_{kB} = \log(\widehat{HR}_{kB}) \sim N(\theta_B, var(\hat{\theta}_{kB})), \mathcal{I}_{kB} = (var(\hat{\theta}_{kB}))^{-1} = N_{kB}/4$$
$$\hat{\theta}_{kC} = \log(\widehat{HR}_{kC}) \sim N(\theta_C, var(\hat{\theta}_{kC})), \mathcal{I}_{kC} = (var(\hat{\theta}_{kC}))^{-1} = N_{kC}/4$$

with \mathcal{I}_{kA} , \mathcal{I}_{kB} , \mathcal{I}_{kC} are information levels in Group A, B and C and N_{kA} , N_{kB} , N_{kC} are numbers of events respectively at *k*th stage, where $k \in \{1, 2\}$ with 1 for IA, 2 for PA

Under null hypotheses $H_{0,kC}$: $\theta_C = 0$; $H_{0,kB}$: $\theta_B = 0$; $H_{0,kA}$: $\theta_A = 0$, logrank test statistics ($Z_C = \hat{\theta}_{1C} \sqrt{\mathcal{I}_{1C}}, Z_B = \hat{\theta}_{1B} \sqrt{\mathcal{I}_{1B}}, Z_A = \hat{\theta}_{1A} \sqrt{\mathcal{I}_{1A}}, Z_{C'} = \hat{\theta}_{2C} \sqrt{\mathcal{I}_{2C}}, Z_{B'} = \hat{\theta}_{2B} \sqrt{\mathcal{I}_{2B}}, Z_{A'} = \hat{\theta}_{2A} \sqrt{\mathcal{I}_{2A}}$) has approximately canonical joint distribution

$$\begin{pmatrix} Z_{C} \\ Z_{B} \\ Z_{A} \\ Z_{C'} \\ Z_{B'} \\ Z_{A'} \end{pmatrix} \sim N \begin{pmatrix} \theta_{C} \sqrt{\mathcal{I}_{1C}} \\ \theta_{B} \sqrt{\mathcal{I}_{1B}} \\ \theta_{A} \sqrt{\mathcal{I}_{1A}} \\ \theta_{C} \sqrt{\mathcal{I}_{2C}} \\ \theta_{B} \sqrt{\mathcal{I}_{2C}} \\ \theta_{B} \sqrt{\mathcal{I}_{2B}} \\ \theta_{A} \sqrt{\mathcal{I}_{2A}} \end{pmatrix}, \begin{pmatrix} 1 & \sqrt{\tau_{CB}} & \sqrt{\tau_{CA}} & \sqrt{\tau_{CC'}} & \sqrt{\tau_{CB'}} & \sqrt{\tau_{CA'}} \\ \sqrt{\tau_{CB}} & 1 & \sqrt{\tau_{BA}} & \sqrt{\tau_{BC'}} & \sqrt{\tau_{BB'}} & \sqrt{\tau_{BA'}} \\ \sqrt{\tau_{CC'}} & \sqrt{\tau_{BA}} & 1 & \sqrt{\tau_{AC'}} & \sqrt{\tau_{AB'}} & \sqrt{\tau_{AA'}} \\ \sqrt{\tau_{CC'}} & \sqrt{\tau_{BC'}} & \sqrt{\tau_{AC'}} & 1 & \sqrt{\tau_{C'B'}} & \sqrt{\tau_{CA'}} \\ \sqrt{\tau_{CB'}} & \sqrt{\tau_{BB'}} & \sqrt{\tau_{AB'}} & \sqrt{\tau_{C'B'}} & 1 & \sqrt{\tau_{B'A'}} \\ \sqrt{\tau_{CA'}} & \sqrt{\tau_{BA'}} & \sqrt{\tau_{AA'}} & \sqrt{\tau_{C'A'}} & \sqrt{\tau_{B'A'}} & 1 \end{pmatrix}$$

where

$$\begin{split} \tau_{CB} &= \mathcal{I}_{1C}/\mathcal{I}_{1B}, \tau_{CA} = \mathcal{I}_{1C}/\mathcal{I}_{1A}, \tau_{CC'} = \mathcal{I}_{1C}/\mathcal{I}_{2C}, \tau_{CB'} = \mathcal{I}_{1C}/\mathcal{I}_{2B}, \tau_{CA'} = \mathcal{I}_{1C}/\mathcal{I}_{2A}, \\ \tau_{BA} &= \mathcal{I}_{1B}/\mathcal{I}_{1A}, \tau_{BC'} = (\mathcal{I}_{1C}/\mathcal{I}_{1B}) * (\mathcal{I}_{1C}/\mathcal{I}_{2C}), \tau_{BB'} = \mathcal{I}_{1B}/\mathcal{I}_{2B}, \tau_{BA'} = \mathcal{I}_{1B}/\mathcal{I}_{2A}, \\ \tau_{AC'} &= (\mathcal{I}_{1C}/\mathcal{I}_{1A}) * (\mathcal{I}_{1C}/\mathcal{I}_{2C}), \tau_{AB'} = (\mathcal{I}_{1B}/\mathcal{I}_{1A}) * (\mathcal{I}_{1B}/\mathcal{I}_{2B}), \tau_{AA'} = \mathcal{I}_{1A}/\mathcal{I}_{2A}, \\ \tau_{C'B'} &= \mathcal{I}_{2C}/\mathcal{I}_{2B}, \tau_{C'A'} = \mathcal{I}_{2C}/\mathcal{I}_{2A}, \\ \tau_{B'A'} &= \mathcal{I}_{2B}/\mathcal{I}_{2A}, \end{split}$$

are information fractions

- Define score statistics $(S_C, S_B, S_A, S_{C'}, S_{B'}, S_{A'}) = (Z_C \sqrt{\mathcal{I}_{1C}}, Z_B \sqrt{\mathcal{I}_{1B}}, Z_A \sqrt{\mathcal{I}_{1A}}, Z_{C'} \sqrt{\mathcal{I}_{2C}}, Z_{B'} \sqrt{\mathcal{I}_{2B}}, Z_{A'} \sqrt{\mathcal{I}_{2A}})$, then $(S_C, S_B S_C, S_A S_B, S_{C'} S_A, S_{B'} S_{C'}, S_{A'} S_{B'})$ are not independent anymore
- For the case study with IA, $\tau_{CB} = 0.64$, $\tau_{CA} = 0.46$, $\tau_{CC'} = 0.60$, $\tau_{CB'} = 0.38$, $\tau_{CA'} = 0.28$, $\tau_{BA} = 0.72$, $\tau_{BC'} = 0.38$, $\tau_{BB'} = 0.60$, $\tau_{BA'} = 0.43$, $\tau_{AC'} = 0.28$, $\tau_{AB'} = 0.43$, $\tau_{AA'} = 0.60$, $\tau_{C'B'} = 0.64$, $\tau_{C'A'} = 0.46$, $\tau_{B'A'} = 0.72$

Spiessens and Debois (2010); Jennison and Turnbull (1997, 2000)

Page 13

A PRESPECIFIED TESTING RULE WITH IA

SIMPLIFIED TESTING STRATEGY

*n is the number of tests in either IA or PA with always n>=2. In the artificial case study, n=3.

Page 15

Roche

OUTCOMES WHEN WITH IA

	IA		PA		Outcome of label claiming	Probability of outcome	Accumulated probability		
	BM H	BM H & M	All- comer	BM H	BM H & M	All- comer			Power of IA
1	+	+	+				All-comer at IA	22.39%	22.4% (Marginal power for All-comer: 31.8%)
2	+	+	-			+	BM H&M at IA, All-comer at PA	8.52%	30.9%
3	+	+	-			-	BM H&M at IA	0.02%	30.9% (Marginal power for BM H&M: 40.4%)
4	+	-			+	+	BM H at IA, All- comer at PA	9.75%	40.7%
5	+	-			+	-	BM H at IA, BM H&M at PA	0.10%	40.8%
6	+	-			-		BM H at IA	0.02%	40.8% (Marginal power for BM H: 40.8%)
Key	 Key message Powers are lower when taking correlations into consideration with IA (-9.4% for all-comer and -9.5% for BM H&H respectively at IA) Difference might be larger if assumptions changed 								

NON-PROPORTIONAL HAZARD RATIO – MARGINAL POWER

		Sampl e size	Event patient ratio, EPR (IA)	Events (IA)	PH: Marginal power (IA)	NPH(assume 3M efficacy effect delay): Marginal power (IA)
14/:46	BM H (Group C)	451	68%	305	87.6%	62.7%
out IA	BM H&M (Group B)	676	69%	465	87.3%	62.2%
	All-comer (Group A)	902	70%	631	80.0%	56.8%
	BM H (Group C)	451	68% (41%)	307 (184)	87.6% (40.8%)	62.7% (13.9%)
With IA	BM H&M (Group B)	676	69% (42%)	469 (281)	87.3% (40.4%)	62.2% (12.1%)
	All-comer (Group A)	902	71% (42%)	636 (382)	80.0% (31.8%)	56.8% (8.1%)

Key message

 Power decrease are 23%~25% for PA when assuming 3 months efficacy effect delay while larger for IA (27%~49%)

Decrease depends on specific assumption of treatment effect delay

Roche SBF/SJTU

- How about if correlations are considered too?
- Unfortunately NO theory established yet when assuming non-proportional HR!

A tentative strategy	 To approximate the NPH model with a PH model by re-estimating a rough proportional HR* from NPH simulation
Pros	 Very straightforward for audience to understand impacts of NPH Make cross-table comparison possible
Cons	 Lack of solid theory support and good accuracy Need further investigation on the HR re- estimation

NON-PROPORTIONAL HAZARD RATIO – POWER FINDINGS

	PA/IA		Outcome of label claiming	РН	NPH*	
	BM H	BM H & M	All- comer		Power of PA (IA)/Assumed HR	Power of PA (IA)/Re- estimated HR
1	+	+	+	All-comer at PA	74.5% (22.4%)/0.70	43.0% (7.9%)/0.77
2	+	+	-	BM H&M at PA	82.4% (30.9%)/0.75	53.0% (12.2%)/0.81
3	+	-		BM H at PA	87.6% (40.8%)/0.80	62.7% (19.0%)/0.85

	 Either taking correlation into account or NPH will lower down powers for both IA and PA
Key message -	 When taking correlations into account, power decrease from PH to NPH is usually larger than the case of marginal power for PA (for IA, it is on the contrary) When assuming the NPH model, power decrease from marginal power to correlated one is usually larger than the case of PH model for PA (for IA, it is on the contrary) IA power for NPH considering correlation >= marginal IA power for NPH is most-likely due to poor approximation of the tentative strategy (intuitively it should be "<") More investigation needed to understand the 'why'

TOPICS FOR FURTHER EXTENSION

Maurer and Bretz (2013); Xi et al (2017); Tamhane et al (2018)

TAKE-AWAY MESSAGES

Interim analysis brings more complexity to group sequential design with multiple biomarker subgroups

Correlations among subgroups should be considered to calculate power

Scenario planning for claiming study success at IA/PA is be pre-discussed prior to study readouts

Group sequential testing method, non-proportional HR and alpha spending methods need to be fully discussed prior to study conduct

THANK YOU

Page 22 Roche

