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ESTIMAND

An ESTIMAND includes

1. Target population

2. Endpoint (the variable to be measured)

3. Strategies to account for intercurrent events (potential confounders)

4. Population summaries for statistical inference and comparison

ESTIMAND for confirmatory (late-phase) trials depends on results from
early-phase trials, such as

• target population

There could be discrepancies between ESTIMAND for confirmatory trials
and important components for early-phase trials, such as

• endpoint
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Phase I dose-finding (Oncology)

Consider trials with fixed doses.

Setup Climb up and down a sequence of D ordered doses of a new drug
to determine the maximum tolerated dose (MTD).

Data At each dose i, ni patients are tested, yi patients experienced
toxicity outcome (DLT).

Parameters Dose i has a toxicity probability of pi (unknown).

Sampling Model Binomial yi | pi ∼ Bin(ni, pi)

Assumption Toxicity Monotonicity : pi ≤ pi+1.

Hidden assumption Efficacy Monotonicity : qi ≤ qi+1 – if not, why
escalate when the dose is safe?

Goal to find the MTD, defined as the highest dose with toxcity rate
lower (or close to) a target rate, pT , e.g., pT = 0.30.

Intercurrent event Death (how to account for death in dose-finding trials)
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ESTIMAND for dose-finding trials

1. Target Population
• Traditionally, all comers (e.g., all patients with solid tumors)
• Recently, in Immune-Oncology (e.g., CAR-T trials), targeted cancer

types (subtypes). Often the same as late-phase population

2. Endpoint
• Binary DLT: yes/no
• Different grades; multiple cycles; time-to-event

3. Intercurrent Event
• Death: due to toxicity vs. due to disease
• Side effects from other medications

4. Population Summary
• DLT rates at different doses
• Total toxicity risk score (for toxicity grades)
• Average toxicity rates over cycles
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Existing Designs

3+3 • Storer (1989). Algorithmic design; simple and transparent;
popular among physicians

• Lacks a standard program; performs worse than model-based
designs

CRM • The first model-based design. First publication in 1990.
• Many different versions; black-box to physicians

mTPI and mTPI-2 • Ji et al. (2010); Guo et al. (2017). Model-based
interval design in an algorithmic presentation

• Getting popular in the community; user-friendly software;
simple and transparent

CCD and BOIN • CCD (Ivanova et al. 2007), extension of CCD –
BOIN (Liu and Ying 2015); also model-based interval designs
but with a different framework

• Simple inference based on point estimate of toxicity
probabilities; BOIN asymptotic behavior is strange
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The Industry-Standard 3+3 Design

– Yang et al. (2015)
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The 3+3 Design

Standard in clinical community (simple, transparent, “make sense”,
perform reasonably well if pT ∼ 17% or 30%.)

Favorite Target to statisticians

• Not model-based
• No more than 6 patients per dose
• Arbitrary choice of “3”
• Conservative – slow escalation

Dominant in practice (e.g., Rogatko et al. 2007)

• >98% of all phase I trials between 1991-2006 were based on
3+3 or its variations

• Out of 1,235 trials during the period, 20 were based on CRM; 3
based on EWOC (a variation of CRM)

• getting less popular and more frequently criticized recently (Nie
et al., 2016)

Yuan Ji, PhD Early Phase Trial Designs and Estimand 21



Introduction Different Dose-Finding Designs Interval Designs U-Design Demo

The 3+3 Design: Is it conservative?

• Ji and Wang (2013, JCO) showed that with matched sample size,
3+3 is less safe and reliable when compared to the mTPI design , a
model-based design.

• The 2015 FDA/AACR Dose-Finding Symposium concluded that
(Nie et al., 2016, Clinical Cancer Research)

“The MTD/3+3 approach is not optimal and may result in
recommended doses that are unacceptably toxic for many patients
and in dose reduction/interruptions that might have an impact on
effectiveness.”
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The CRM Design – a specific model

Perhaps the most popular version of the CRM is the power model:

• The dose-response curve : pi = p
exp(α)
i0 , where pi0 are fixed and

prespecified constants, and α is a parameter that describes the dose
response curve.

• The prior for α is N(0, 2).

• The pi0’s are decided by solving E[p
exp(α)
i ] = si, where si’s are a set

of prior probabilities that one must determine (called ”skeletons” ).

• A binomial likelihood:
∏d
i=1 p

yi
i (1− pi)ni−yi .

• Posterior of α is obtained by numerical integration.

• The next dose is argmini | p̂i − pT | , where p̂i is the posterior
mean.
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The CRM Design – trial conduct

• Challenging to implement in practice (logistic and people issues)

• How does one actually conduct a practical trial using CRM?:
• Need to set up an infrastructure between statisticians and nurses at

clinics (potentially multiple sites).

• Anti-CRM ad-hoc rules: Coherence and Over-dose control (e.g., no
skipping dose when escalation)

• Team meetings are needed for every patient allocation – CRM
decisions may be overruled.
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The mTPI and mTPI-2 designs are interval designs. The CCD
and BOIN designs are a different type of interval designs.
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Hallmark of ”Interval Designs”

The decision of dose finding involves inference based on toxicity
probability intervals.

• Interval designs : up-and-down decisions based on intervals (mTPI,
mTPI-2, CCD, BOIN)

Stay Escalate De-escalate
pi ∈ (pT − ε1, pT + ε2) pi ∈ (0, pT − ε1) pi ∈ (pT + ε2, 1)

• Non-interval designs : CRM chooses the dose

argmin
i
|p̂i − pT |,

3+3 uses up-and-down decisions based on

yi
ni
,

Yuan Ji, PhD Early Phase Trial Designs and Estimand 26



Introduction Different Dose-Finding Designs Interval Designs U-Design Demo

The mTPI Design

Interval designs are a simple, transparant, intuitive and model-based .

– An mTPI decision table

but in an algorithmic form
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Interval-Based Decision Rules

Divid (0, 1) into three intervals:

(0, pT − ε1), (pT − ε1, pT + ε2)︸ ︷︷ ︸
Equivalence Interval

, (pT + ε2, 1)

.
Associate with

E, S, D

Measure the unit probability mass (UPM) of each interval under the
posterior of pi.

Decide the action corresponding to the largest UPM (Bayes rule – more
on this next).
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UPM and Bayes rule

UPM (interval) =
post. prob { pi ∈ (interval)}

length (interval)
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Ockham’s razor and interval length

In mTPI, when 3 out of 6 patients have DLT and if pT = 0.3, the
decision based on UPM is S, to stay at the current dose. Why?

Ockham’s razor states the principle that an explanation of the facts
should be no more complicated than necessary

Bayesian model selection requires a prior p(Mk) for the candidate model
k and a prior p(θk |Mk). Models are selected based on
p(Mk | data) and automatically applies the Ockham’s razor: when
two models fit the data equally well, the smaller one wins.

The mTPI design considers three intervals that partition the sample
space (0, 1) for the probability of toxicity pd at a given dose d:

ME : pd ∈ (0, pT − ε1)
MS : pd ∈ (pT − ε1, pT + ε2)

MD : pd ∈ (pT + ε2, 1) (1)

Typically, pT ranges from 0.1 to 0.3 in phase I trials, and ε’s are
usually small, say ≤ 0.05. So MS the middle interval is the smallest
(shortest).
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Ockham’s razor and interval length – Con’t

So mTPI is based on the decision rule for dose i

DmTPI = arg max
k∈{E,S,D}

UPM(k, i) (2)

Turns out this rule is the Bayes rule for the following decision framework:
Theorem 1. Given the sampling model yi | pi ∼ Bin(ni, pi) and priors

f(pi |Mk) ∼ 1

S(Mk)
I(pi ∈Mk)

p(Mk) =
1

3

independently for all doses, and given the 0-1 loss function `(i,Mj) in
(3) for three decisions, where i, j ∈ {E,S,D}, decision rule DmTPI in
(2) is optimal in the sense that it minimizes the posterior expected loss.

`(a = i,md =Mj) =

{
1, if i 6= j;
0, if i = j,

for i, j ∈ {E,S,D}. (3)
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UPM is the marginal posterior probability of each model (interval)

Turns out
UPM(k, i) = Pr(Mk is true | {xi, ni})

This is the marginal posterior probability of model k.
The size of the model is the length of the interval. Ockham’s razor picks
model MS : pi ∈ (0.25, 0.35); mTPI selects decision “S” when xi = 3
out of ni = 6 patients experience the DLT.
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The mTPI-2 design (Guo et al., 2017): Blunt the Ockham’s Razor

Divid (0, 1) into subintervals with equal length , same as that of
(pT − ε1, pT + ε2).
Pick the decision {D,S,E} corresponding to the interval with the largest
UPM.
Still the Bayes (optimal) rule
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The mTPI-2 Design Compares Favorable to Other Designs
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The mTPI-2 Design Compares Favorable to Other Designs

We compared mTPI, mTPI-2, 3+3, CRM, BOIN in terms of reliability
(power of finding MTD) and safety.

Ji and Yang (2017; https://arxiv.org/abs/1706.03277 )
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A New Web-based Integrative Dose-Finding Tool

http://udesign.laiyaconsulting.com

Web Based: No need to download any software; works on MAC, PC,
iPAD, and smart phones – just need an internet browser (e.g.,
Chrome, FireFox)

Integrative: Offers up to six designs, 3+3, CRM, mTPI-2, BLRM, etc.
Many new features: CRM decision table, etc.
User-friendly: Demo...
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Go beyond toxicity probability intervals

• Interval designs are transparent, simple, and easy to implement. And
they are model based.

• Existing drug development more often require incorporation of
efficacy outcome in dose finding

• Interval designs can be effective for some cases, such as the use of
toxicity and efficacy probability intervals (TEPI) in Li et al., (2016)
for CAR-T therapies

• The posterior probabilities of the intervals can be used to assess the
uncertainties of the dose-finding decisions, which can lead to
randomized dose-finding designs (ongoing work).
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Thank You!
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