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Survival Analysis

Survival analysis is used to analyze data in which the time until the
event is of interest. The response is often referred to as a failure
time, survival time, or event time, e.g.,

Time until tumor recurrence

Time until cardiovascular death after some treatment
intervention

Time until AIDS for HIV patients

Time until a machine part fails
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The survival time response

Usually Continuous

Incompletely observed responses are censored

Let survival time T be a nonnegative random variable and

T ∈ (L,R] (Sun, 2007)

- Exact observation: 0 < L = R <∞
- Right Censoring: 0 < L < R =∞
- Interval Censoring: 0 < L < R <∞

e.g., HIV infection time

Ignore interval-censoring?
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Statistical Methods

Estimation of the survival distribution

- Kaplan-Meier or Product Limit Estimator
- Life-Table

Comparison of survival curves

- Log-Rank Test

Regression Models with respect to hazard

- Parametric regression models: exponential, Weibull, etc.
- Semiparametric regression models: Cox, etc.

λ(t) = λ0(t) exp(xTβ)

Cox model, or relative risk model = proportional hazards
model? β or β(t).
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Time-varying coefficient example

Time-varying effect of the performance score on stroke readmission:
β(t), solid; 95% point-wise confidence interval, dotted; performance
score effect in constant coefficient model, dashed (Yu et al., 2013).
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Motivating example

Smoking cessation data in southeastern Minnesota

Lung health study (Murray et al., 1998)

Event of interest: Time to smoking relapse

Covariates: Gender (F/M), Treatment (Intervention/Usual)

Challenge

The effect of Treatment may vary over time

Cox model with interval-censored data

The correlation of subjects within/between zip code areas
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Methods

Challenge

The effect of Treatment may vary over time
Solution: Time-varying coefficient β(t)

- Gibbs sampling with piecewise constant coefficient
assumption (Sinha et al., 1999)

- Penalized splines (Cai and Betensky, 2003; Kneib, 2006)
X Reversible jump Markov chain Monte Carlo (Green, 1995)

Cox model with interval-censored data
Solution: Piecewise constant baseline and augmented
likelihood (Sinha et al., 1999)

The correlation of subjects within/between zip code areas

- Frailty model (Yu et al., 2013; Zhang et al., 2018)
X Spatially correlated frailty (Carlin and Louis, 1997;

Banerjee et al., 2003)
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Model

Cox model with time-varying coefficient and frailty:

λ(t|ωi , xi ,j) = λ0(t) exp(xTi ,jβ(t) + ωi )

i = 1, 2, ..., n, j = 1, 2, ...,mi , N =
∑n

i=1 mi

λ0(.) is an unknown baseline hazard function common to all
subjects

xi ,j is the covariate vector for the j th subject in the i th cluster

β(t) is the time-varying coefficient of main interest

ωi is the frailty of the i th cluster
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likelihood

Observed data likelihood of subject i

Interval censoring: `i = P(Ti > Li )− P(Ti > Ri )

Right censoring: `i = λ(ti )
δiS(ti )

Latent variables

dNi,j,k = 1(Ti,j ∈ (τk−1, τk ]), k = 1, 2, ...K

Yi,j,` = 1 for ` < k , Yi,j,` = 0 for ` > k , and

Yi,j,` = (Ti,j − τ`−1)/∆` for ` = k

Augmented likelihood
Set Θ = {log λ0(t),β(t)}, D = {dNi ,j ,k ,Yi ,j ,k}, W = {ωi},
λk = λ0(τk) and βk = β(τk) for k = 1, 2, ...,K ,

`i,j(Θ|D,W , xi,j)

=
K∏

k=1

{λkωi exp(xTi,jβk)}dNi,j,k exp{−∆kλkωi exp(xTi,jβk)Yi,j,k}
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Prior specification

Three models

- Model 1: Fixed β with spatially correlated ωi ’s
- Model 2: Time-varying β(t) with independent ωi ’s
- Model 3: Time-varying β(t) with spatially correlated ωi ’s

Prior of coefficient

- Fixed β: λk ∼ G(ck , dk), β ∼ N (µ0, σ
2
0)

- Time-varying β(t): θ(τp)|θ(τp−1) ∼ N (θ(τp−1), ν),
where θ = {log λ0,β}

Prior of frailty

Independent ωi : ωi
i .i .d .∼ N (0, σ2).

Spatially correlated ωi : ωi |ω−i ∼ N (ω̄ii , 1/(miπω))
Intrinsic conditional autoregressive (ICAR) model prior
(Besag and Kooperberg, 1995)
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Posterior computation of latent variables: dNi ,j ,k and Yi ,j ,k

Event indicator vector (dNi,j,1, dNi,j,2, ..., dNi,j,k) follows a
multinomial distribution with size 1 and probability vector
(ei,j,1, ei,j,2, ..., ei,j,k), where for k = 1, 2, ...,K ,

ei,j,k =
pi,j,k1(sk ∈ (Li,j ,Ri,j ])∑

sl∈(Li,j ,Ri,j ]
pi,j,l

,

pi,j,k =


exp

{
−
∑k−1

l=1 ∆lλl exp(xTi,jβk + ωi )
}
−

exp
{
−
∑k

l=1 ∆lλlωi exp(xTi,jβk + ωi )
}

if k > 1

1− exp
{
−∆1λ1 exp(xTi,jβ1 + ωi )

}
if k = 1

Sample failure time Ti,j , where Ti,j follows a doubly truncated
exponential distribution on (τk−1, τk ]

F (u) =
1− exp{−λk(u − sk−1) exp(xTi,jβk) + ωi}

1− exp{−λk∆k exp(xTi,jβk + ωi )}

Yi,j,k = (Ti,j − τk−1)/∆k
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Posterior computation: λ0(t), β(t) and ωi

θ(t) = {log(λ0(t)), β(t)}. Reversible jump MCMC

- Update move: Number of jumps P and jump times are fixed

Pr(θ(τp)|Θ/{θ(τp)},D, ν,W ) ∝ exp

{
− (θ(τp)− µp)2

2σ2
p

}

× exp

−
n∑

i=1

mi∑
j=1

K∑
k=1

1(τk ∈ (τp−1, τp])∆kλkωi exp(xTi,jβk)Yi,j,k

 ,

- Birth move: A new jump time τ
′

is randomly selected from
non-jump time grids

- Death move: A current jump time τ
′

is randomly selected and
deleted

Sample ωi with Metropolis-Hastings algorithm.

Pr(ωi |Θ,D, πω, ω−i ) ∝
Ji∏
j=1

K∏
k=1

{λk exp(xTi,jβk + ωi}dNi,j,k

exp{−∆kλk exp(xTi,jβk + ωi )Yi,j,k}Pr(ωi |ω−i ).
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Simulation

Six combinations
Combo 1: β1 = 1, x1 ∼ B(N, 0.5)
Combo 2: β1 = 1, x1 ∼ N (0, 1)
Combo 3: β1 = 1, x1 ∼ B(N, 0.5) , β2 = 1, x2 ∼ N (0, 1)
Combo 4: β1 = 0.5 + sin(tπ/9), x1 ∼ B(N, 0.5)
Combo 5: β1 = 0.5 + sin(tπ/9), x1 ∼ N (0, 1)
Combo 6: β1 = 0.5 + sin(tπ/9), x1 ∼ B(N, 0.5), β2 = 1,

x2 ∼ N (0, 1)

Spatial frailties are based on 45 zip code areas in Cincinnati,
there are 15 subjects in each zip code area.

Baseline hazard function: λ0(t) = 0.1
√
t.

Log-normal density function LN (x ; 0, 0.4) is used to simulate
follow-up times.
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Coefficient estimates for combinations with one covariate

Combo1 Combo2 Combo4 Combo5
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Coefficient estimates for combinations with two covariates
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LPML comparison between Model 2 and Model 3

LPML comparison result between Model 2 and Model 3

Combo 1 Combo 2 Combo 3

LPML Diff 117.6 (-139.0, 391.3) 145.8 (-287.1, 498.3) 125.5 (-92.9, 498.3)

% Diff > 0 84% 79% 89%

Combo 4 Combo 5 Combo 6

LPML Diff 116.4 (-129.5, 343.7) 115.1 (-159.9, 539.4) 100.6 (-117.9, 357.6)

% Diff > 0 85% 70% 81%

LPML Diff = LPML of Model 3 − LPML of Model 2. Mean and (0.025, 0.975)
quantile from 100 replicates are reported. % Diff > 0 is calculated as percentage of
LPML Diff > 0 over 100 replicates.
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Maps of posterior means for the 45 spatial frailties

Simulated Frailties
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Smoking data: Coefficient of Gender and Treatment

Model 1 Model 2 Model 3
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Tooth data (Zhang et al., 2018)
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Posterior mean of frailties

Model 1
Missing
under −0.04
−0.04 − −0.02
−0.02 − 0
0 − 0.02
0.02 − 0.04
over 0.04

Model 2
Missing
under −0.04
−0.04 − −0.02
−0.02 − 0
0 − 0.02
0.02 − 0.04
over 0.04

Model 3
Missing
under −0.04
−0.04 − −0.02
−0.02 − 0
0 − 0.02
0.02 − 0.04
over 0.04
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Summary

Reversible jump MCMC is a powerful tool to deal with model
dimensionality, i.e., smooth the time-varying curve in this
project.

Spatial correlation needs to be considered.

Current & future work

- Improvement of reversible jump MCMC
- Spline model?
- Sample size calculation
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